Пример #1
0
    def errprob(self, E, Ei=0, thresh=2e-9, typ='thresh'):
        """ calculates error probability

        Parameters
        ----------

        E  : float
            Legitimate Signal Energy
        Ei : float
            Interferer Signal Energy
        thresh : float
        typ : string
            'thresh'
            'scale': for IEEE.802.11.6 standard
            'both' : both kind of decision

        Returns
        -------

        errp : error probability

        Notes
        -----

        See Also
        --------

        scipy.stats.ncf
        ED.pdf

        """

        self.pdf(E, Ei=Ei)

        if typ == 'thresh':
            self.p10 = self.pH0.sf(thresh)
            self.p01 = 1 - self.pH1.sf(thresh)
            errp = 0.5 * (self.p10 + self.p01)

        if typ == 'scale':
            ncf = st.ncf(dfn=self.order,
                         dfd=self.order,
                         scale=1,
                         nc=self.E / self.scale)
            errp = 1 - ncf.sf(1)

        if typ == 'both':
            self.p10 = self.pH0.sf(thresh)
            self.p01 = 1 - self.pH1.sf(thresh)
            pe1 = 0.5 * (self.p10 + self.p01)
            ncf = st.ncf(dfn=self.order,
                         dfd=self.order,
                         scale=1,
                         nc=self.E / self.scale)
            pe2 = 1 - ncf.sf(1)
            errp = (pe1, pe2)

        return (errp)
Пример #2
0
    def errprob(self,E,Ei=0,thresh=0,typ='thresh'):
        """ calculates error probability

        Parameters
        ----------

        E  : float
            Legitimate Signal Energy
        Ei : float
            Interferer Signal Energy
        thresh : float
        typ : string
            'thresh'
            'scale': for IEEE.802.11.6 standard
            'both' : both kind of decision

        Returns
        -------

        errp : error probability

        Notes
        -----

        See Also
        --------

        scipy.stats.ncf
        ED.pdf

        """

        self.pdf(E,Ei=Ei)

        if typ=='thresh':
            self.p10 = self.pH0.sf(thresh)
            self.p01 = 1-self.pH1.sf(thresh)
            errp = 0.5*(self.p10+self.p01)

        if typ=='scale':
            ncf = st.ncf(dfn = self.order,
                         dfd = self.order,
                         scale = 1,
                         nc = self.E/self.scale)
            errp = 1 - ncf.sf(1)

        if typ=='both':
            self.p10 = self.pH0.sf(thresh)
            self.p01 = 1-self.pH1.sf(thresh)
            pe1 = 0.5*(self.p10+self.p01)
            ncf = st.ncf(dfn=self.order,
                         dfd=self.order,
                         scale=1,
                         nc=self.E/self.scale)
            pe2= 1 - ncf.sf(1)
            errp =(pe1,pe2)

        return(errp)
Пример #3
0
def amplitude_detection(A, var, p=0.95, alpha=0.05):

    sigma2 = var
    C_2 = A**2 / sigma2

    N = 4

    while True:
        lmbda = (N * C_2) / 4
        f2 = f(2, N - 3, 0).ppf(1 - alpha)
        F = 1 - ncf(2, N - 3, lmbda).cdf(f2)
        if F >= p:
            break

        N += 1

    return N
Пример #4
0
dfn, dfd, nc = 27, 27, 0.416
mean, var, skew, kurt = ncf.stats(dfn, dfd, nc, moments='mvsk')

# Display the probability density function (``pdf``):

x = np.linspace(ncf.ppf(0.01, dfn, dfd, nc), ncf.ppf(0.99, dfn, dfd, nc), 100)
ax.plot(x, ncf.pdf(x, dfn, dfd, nc), 'r-', lw=5, alpha=0.6, label='ncf pdf')

# Alternatively, the distribution object can be called (as a function)
# to fix the shape, location and scale parameters. This returns a "frozen"
# RV object holding the given parameters fixed.

# Freeze the distribution and display the frozen ``pdf``:

rv = ncf(dfn, dfd, nc)
ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

# Check accuracy of ``cdf`` and ``ppf``:

vals = ncf.ppf([0.001, 0.5, 0.999], dfn, dfd, nc)
np.allclose([0.001, 0.5, 0.999], ncf.cdf(vals, dfn, dfd, nc))
# True

# Generate random numbers:

r = ncf.rvs(dfn, dfd, nc, size=1000)

# And compare the histogram:

ax.hist(r, normed=True, histtype='stepfilled', alpha=0.2)
Пример #5
0
def all_dists():
    # dists param were taken from scipy.stats official
    # documentaion examples
    # Total - 89
    return {
        "alpha":
        stats.alpha(a=3.57, loc=0.0, scale=1.0),
        "anglit":
        stats.anglit(loc=0.0, scale=1.0),
        "arcsine":
        stats.arcsine(loc=0.0, scale=1.0),
        "beta":
        stats.beta(a=2.31, b=0.627, loc=0.0, scale=1.0),
        "betaprime":
        stats.betaprime(a=5, b=6, loc=0.0, scale=1.0),
        "bradford":
        stats.bradford(c=0.299, loc=0.0, scale=1.0),
        "burr":
        stats.burr(c=10.5, d=4.3, loc=0.0, scale=1.0),
        "cauchy":
        stats.cauchy(loc=0.0, scale=1.0),
        "chi":
        stats.chi(df=78, loc=0.0, scale=1.0),
        "chi2":
        stats.chi2(df=55, loc=0.0, scale=1.0),
        "cosine":
        stats.cosine(loc=0.0, scale=1.0),
        "dgamma":
        stats.dgamma(a=1.1, loc=0.0, scale=1.0),
        "dweibull":
        stats.dweibull(c=2.07, loc=0.0, scale=1.0),
        "erlang":
        stats.erlang(a=2, loc=0.0, scale=1.0),
        "expon":
        stats.expon(loc=0.0, scale=1.0),
        "exponnorm":
        stats.exponnorm(K=1.5, loc=0.0, scale=1.0),
        "exponweib":
        stats.exponweib(a=2.89, c=1.95, loc=0.0, scale=1.0),
        "exponpow":
        stats.exponpow(b=2.7, loc=0.0, scale=1.0),
        "f":
        stats.f(dfn=29, dfd=18, loc=0.0, scale=1.0),
        "fatiguelife":
        stats.fatiguelife(c=29, loc=0.0, scale=1.0),
        "fisk":
        stats.fisk(c=3.09, loc=0.0, scale=1.0),
        "foldcauchy":
        stats.foldcauchy(c=4.72, loc=0.0, scale=1.0),
        "foldnorm":
        stats.foldnorm(c=1.95, loc=0.0, scale=1.0),
        # "frechet_r": stats.frechet_r(c=1.89, loc=0.0, scale=1.0),
        # "frechet_l": stats.frechet_l(c=3.63, loc=0.0, scale=1.0),
        "genlogistic":
        stats.genlogistic(c=0.412, loc=0.0, scale=1.0),
        "genpareto":
        stats.genpareto(c=0.1, loc=0.0, scale=1.0),
        "gennorm":
        stats.gennorm(beta=1.3, loc=0.0, scale=1.0),
        "genexpon":
        stats.genexpon(a=9.13, b=16.2, c=3.28, loc=0.0, scale=1.0),
        "genextreme":
        stats.genextreme(c=-0.1, loc=0.0, scale=1.0),
        "gausshyper":
        stats.gausshyper(a=13.8, b=3.12, c=2.51, z=5.18, loc=0.0, scale=1.0),
        "gamma":
        stats.gamma(a=1.99, loc=0.0, scale=1.0),
        "gengamma":
        stats.gengamma(a=4.42, c=-3.12, loc=0.0, scale=1.0),
        "genhalflogistic":
        stats.genhalflogistic(c=0.773, loc=0.0, scale=1.0),
        "gilbrat":
        stats.gilbrat(loc=0.0, scale=1.0),
        "gompertz":
        stats.gompertz(c=0.947, loc=0.0, scale=1.0),
        "gumbel_r":
        stats.gumbel_r(loc=0.0, scale=1.0),
        "gumbel_l":
        stats.gumbel_l(loc=0.0, scale=1.0),
        "halfcauchy":
        stats.halfcauchy(loc=0.0, scale=1.0),
        "halflogistic":
        stats.halflogistic(loc=0.0, scale=1.0),
        "halfnorm":
        stats.halfnorm(loc=0.0, scale=1.0),
        "halfgennorm":
        stats.halfgennorm(beta=0.675, loc=0.0, scale=1.0),
        "hypsecant":
        stats.hypsecant(loc=0.0, scale=1.0),
        "invgamma":
        stats.invgamma(a=4.07, loc=0.0, scale=1.0),
        "invgauss":
        stats.invgauss(mu=0.145, loc=0.0, scale=1.0),
        "invweibull":
        stats.invweibull(c=10.6, loc=0.0, scale=1.0),
        "johnsonsb":
        stats.johnsonsb(a=4.32, b=3.18, loc=0.0, scale=1.0),
        "johnsonsu":
        stats.johnsonsu(a=2.55, b=2.25, loc=0.0, scale=1.0),
        "ksone":
        stats.ksone(n=1e03, loc=0.0, scale=1.0),
        "kstwobign":
        stats.kstwobign(loc=0.0, scale=1.0),
        "laplace":
        stats.laplace(loc=0.0, scale=1.0),
        "levy":
        stats.levy(loc=0.0, scale=1.0),
        "levy_l":
        stats.levy_l(loc=0.0, scale=1.0),
        "levy_stable":
        stats.levy_stable(alpha=0.357, beta=-0.675, loc=0.0, scale=1.0),
        "logistic":
        stats.logistic(loc=0.0, scale=1.0),
        "loggamma":
        stats.loggamma(c=0.414, loc=0.0, scale=1.0),
        "loglaplace":
        stats.loglaplace(c=3.25, loc=0.0, scale=1.0),
        "lognorm":
        stats.lognorm(s=0.954, loc=0.0, scale=1.0),
        "lomax":
        stats.lomax(c=1.88, loc=0.0, scale=1.0),
        "maxwell":
        stats.maxwell(loc=0.0, scale=1.0),
        "mielke":
        stats.mielke(k=10.4, s=3.6, loc=0.0, scale=1.0),
        "nakagami":
        stats.nakagami(nu=4.97, loc=0.0, scale=1.0),
        "ncx2":
        stats.ncx2(df=21, nc=1.06, loc=0.0, scale=1.0),
        "ncf":
        stats.ncf(dfn=27, dfd=27, nc=0.416, loc=0.0, scale=1.0),
        "nct":
        stats.nct(df=14, nc=0.24, loc=0.0, scale=1.0),
        "norm":
        stats.norm(loc=0.0, scale=1.0),
        "pareto":
        stats.pareto(b=2.62, loc=0.0, scale=1.0),
        "pearson3":
        stats.pearson3(skew=0.1, loc=0.0, scale=1.0),
        "powerlaw":
        stats.powerlaw(a=1.66, loc=0.0, scale=1.0),
        "powerlognorm":
        stats.powerlognorm(c=2.14, s=0.446, loc=0.0, scale=1.0),
        "powernorm":
        stats.powernorm(c=4.45, loc=0.0, scale=1.0),
        "rdist":
        stats.rdist(c=0.9, loc=0.0, scale=1.0),
        "reciprocal":
        stats.reciprocal(a=0.00623, b=1.01, loc=0.0, scale=1.0),
        "rayleigh":
        stats.rayleigh(loc=0.0, scale=1.0),
        "rice":
        stats.rice(b=0.775, loc=0.0, scale=1.0),
        "recipinvgauss":
        stats.recipinvgauss(mu=0.63, loc=0.0, scale=1.0),
        "semicircular":
        stats.semicircular(loc=0.0, scale=1.0),
        "t":
        stats.t(df=2.74, loc=0.0, scale=1.0),
        "triang":
        stats.triang(c=0.158, loc=0.0, scale=1.0),
        "truncexpon":
        stats.truncexpon(b=4.69, loc=0.0, scale=1.0),
        "truncnorm":
        stats.truncnorm(a=0.1, b=2, loc=0.0, scale=1.0),
        "tukeylambda":
        stats.tukeylambda(lam=3.13, loc=0.0, scale=1.0),
        "uniform":
        stats.uniform(loc=0.0, scale=1.0),
        "vonmises":
        stats.vonmises(kappa=3.99, loc=0.0, scale=1.0),
        "vonmises_line":
        stats.vonmises_line(kappa=3.99, loc=0.0, scale=1.0),
        "wald":
        stats.wald(loc=0.0, scale=1.0),
        "weibull_min":
        stats.weibull_min(c=1.79, loc=0.0, scale=1.0),
        "weibull_max":
        stats.weibull_max(c=2.87, loc=0.0, scale=1.0),
        "wrapcauchy":
        stats.wrapcauchy(c=0.0311, loc=0.0, scale=1.0),
    }
def make_mod_pn(snr, n):
    return lambda x: np.abs(
        stats.ncf(n * x[0] - 1, x[0] * (n - 1), nc=(n * x[0]) *
                  (snr)).cdf(stats.f(n * x[0] - 1, x[0] *
                                     (n - 1)).ppf(0.99)) - alpha)
def make_mod_p(snr):
    return lambda x: np.abs(
        stats.ncf(x[1] * x[0] - 1, x[0] * (x[1] - 1), nc=(x[1] * x[0]) * (snr))
        .cdf(stats.f(x[1] * x[0] - 1, x[0] * (x[1] - 1)).ppf(0.99)) - alpha)
def mod_p(m, n, snr):
    c = stats.f(n * m - 1, m * (n - 1)).ppf(0.99)
    p = stats.ncf(n * m - 1, m * (n - 1), nc=(n * m) * (snr)).cdf(c)
    return p
m = ['r2', 'r2c', 'sig2', 'mux', 'muy', 'lam_bar', 'ci_l', 'ci_h', 'cell_id']
df = pd.DataFrame(np.zeros((nunits, len(m))), columns=m)
for i in range(ys.shape[0]):
    X = [ys[i, :, 1::2].values.T, ys[i, :, ::2].values.T]
    l, h = lhs[i][:2]
    est = rc.r2c_b(X)
    df.loc[i][1:5] = est[:4]
    df.loc[i][[-3, -2]] = [l, h]
    df.loc[i][0] = np.corrcoef(X[0].mean(0), X[1].mean(0))[0, 1]**2

n = len(ys.coords['trial']) / 2
m = len(ys.coords['stim'])
df['lam_bar'] = np.sqrt(lam2_bar)
df['z_lam_bar'] = df['lam_bar'] / df['sig2']**0.5
fl = n * (m - 1) * ((df['lam_bar']**2) / df['sig2'])
fl1 = stats.ncf(1, m * (n - 1), fl).mean()
c = stats.f(1, m * (n - 1)).ppf(0.999)
df['logsf_f'] = stats.f(1, m * (n - 1)).logsf(fl1) / np.log(10)
df['cell_id'] = snr.coords['w_lab'].values.astype('str')
#df.to_csv('./figs/fig_data/apc_4_trial_stats_pymc3.csv')
plt.scatter(((c / fl)), df['r2'])
plt.semilogx()
plt.xlim(1e-3, 1)
#%%
stats.ncf(1, m * (n - 1), fl).logcdf(c)

#%%
from scipy.io import loadmat
ecc = loadmat('./data/yas_inv/ecc_yas_80.mat')['ecc'].squeeze()
dia = ecc * .625 + 40
dia = dia / 39