Пример #1
0
def pix2sky(header,x,y):
	hdr_info = parse_header(header)
	x0 = x-hdr_info[1][0]+1.	# Plus 1 python->image
	y0 = y-hdr_info[1][1]+1.
	x0 = x0.astype(scipy.float64)
	y0 = y0.astype(scipy.float64)
	x = hdr_info[2][0,0]*x0 + hdr_info[2][0,1]*y0
	y = hdr_info[2][1,0]*x0 + hdr_info[2][1,1]*y0
	if hdr_info[3]=="DEC":
		a = x.copy()
		x = y.copy()
		y = a.copy()
		ra0 = hdr_info[0][1]
		dec0 = hdr_info[0][0]/raddeg
	else:
		ra0 = hdr_info[0][0]
		dec0 = hdr_info[0][1]/raddeg
	if hdr_info[5]=="TAN":
		r_theta = scipy.sqrt(x*x+y*y)/raddeg
		theta = arctan(1./r_theta)
		phi = arctan2(x,-1.*y)
	elif hdr_info[5]=="SIN":
		r_theta = scipy.sqrt(x*x+y*y)/raddeg
		theta = arccos(r_theta)
		phi = artan2(x,-1.*y)
	ra = ra0 + raddeg*arctan2(-1.*cos(theta)*sin(phi-pi),
				   sin(theta)*cos(dec0)-cos(theta)*sin(dec0)*cos(phi-pi))
	dec = raddeg*arcsin(sin(theta)*sin(dec0)+cos(theta)*cos(dec0)*cos(phi-pi))

	return ra,dec
Пример #2
0
def pix2sky(header,x,y):
	hdr_info = parse_header(header)
	x0 = x-hdr_info[1][0]+1.	# Plus 1 python->image
	y0 = y-hdr_info[1][1]+1.
	x0 = x0.astype(scipy.float64)
	y0 = y0.astype(scipy.float64)
	x = hdr_info[2][0,0]*x0 + hdr_info[2][0,1]*y0
	y = hdr_info[2][1,0]*x0 + hdr_info[2][1,1]*y0
	if hdr_info[3]=="DEC":
		a = x.copy()
		x = y.copy()
		y = a.copy()
		ra0 = hdr_info[0][1]
		dec0 = hdr_info[0][0]/raddeg
	else:
		ra0 = hdr_info[0][0]
		dec0 = hdr_info[0][1]/raddeg
	if hdr_info[5]=="TAN":
		r_theta = scipy.sqrt(x*x+y*y)/raddeg
		theta = arctan(1./r_theta)
		phi = arctan2(x,-1.*y)
	elif hdr_info[5]=="SIN":
		r_theta = scipy.sqrt(x*x+y*y)/raddeg
		theta = arccos(r_theta)
		phi = artan2(x,-1.*y)
	ra = ra0 + raddeg*arctan2(-1.*cos(theta)*sin(phi-pi),
				   sin(theta)*cos(dec0)-cos(theta)*sin(dec0)*cos(phi-pi))
	dec = raddeg*arcsin(sin(theta)*sin(dec0)+cos(theta)*cos(dec0)*cos(phi-pi))

	return ra,dec
Пример #3
0
    def transformPicture(self, accelData):
        x, y, z = accelData[0], accelData[1], accelData[2]
        offset = 512
        # rotate
        if self.wm.buttons["A"]:
            self.c += 1
            print(self.c)
            if self.c % 2 == 0:
                centeredZ = z - offset
                centeredX = x - offset
                rot_angle = int(
                    -(scipy.degrees(scipy.arctan2(centeredZ, centeredX)) - 90))
                if rot_angle < 0:
                    rot_angle = 360 + rot_angle
                self.image.setPixmap(
                    self.pixmap.transformed(
                        QtGui.QTransform().rotate(rot_angle),
                        1).scaledToHeight(400))

        # zoom
        if self.wm.buttons["Down"]:
            centeredZ = z - offset
            centeredY = y - offset

            tilt_angle = scipy.degrees(scipy.arctan2(centeredZ,
                                                     centeredY)) - 90
            scale_val = abs(tilt_angle / 100)
            self.image.setPixmap(
                self.pixmap.transformed(QtGui.QTransform().scale(
                    scale_val, scale_val)))
Пример #4
0
def to_YPR(quaternion):
    q0, q1, q2, q3 = quaternion
    roll = sp.arctan2(2 * (q0 * q1 + q2 * q3), (q0**2 - q1**2 - q2**2 + q3**2))
    pitch = sp.arcsin(-2 * (q1 * q3 - q0 * q2))
    yaw = sp.arctan2(2 * (q1 * q2 + q0 * q3), (q0**2 + q1**2 - q2**2 - q3**2))

    return roll, pitch, yaw
Пример #5
0
def detect_skew(img, min_angle=-20, max_angle=20, quality='low'):
    img = sp.atleast_2d(img)
    rows, cols = img.shape
    min_min_angle = min_angle
    max_max_angle = max_angle

    if quality == 'low':
        resolution = sp.arctan2(2.0, cols) * 180.0 / sp.pi
        min_target_size = 100
        resize_order = 1
    elif quality == 'high':
        resolution = sp.arctan2(1.0, cols) * 180.0 / sp.pi
        min_target_size = 300
        resize_order = 3
    else:
        resolution = sp.arctan2(1.0, cols) * 180.0 / sp.pi
        min_target_size = 200
        resize_order = 2

    # resize the image so it's faster to work with
    min_size = min(rows, cols)
    target_size = min_target_size if min_size > min_target_size else min_size
    resize_ratio = float(target_size) / min_size
    img = imresize(img, resize_ratio)
    rows, cols = img.shape

    # pad the image and invert the colors
    img *= -1
    img += 255
    padded_img = sp.zeros((rows*2, cols*2))
    padded_img[rows//2:rows//2+rows, cols//2:cols//2+cols] = img
    img = padded_img

    # keep dividing the interval in half to achieve O(log(n))
    while True:
        current_resolution = (max_angle - min_angle) / 30.0
        best_angle = None
        best_variance = 0.0

        # rotate the image, sum the pixel values in each row for each rotation
        # then find the variance of all the sums, pick the highest variance
        for i in xrange(31):
            angle = min_angle + i * current_resolution
            rotated_img = rotate(img, angle, reshape=False, order=resize_order)
            num_black_pixels = sp.sum(rotated_img, axis=1)
            variance = sp.var(num_black_pixels)
            if variance > best_variance:
                best_angle = angle
                best_variance = variance

        if current_resolution < resolution:
            break

        # update the angle range
        min_angle = max(best_angle - current_resolution, min_min_angle)
        max_angle = min(best_angle + current_resolution, max_max_angle)

    return best_angle
Пример #6
0
def euler_from_qarray(q,tol=0.499):
    """
    Get array of euler angles from array of quaternions. Note, array of euler angles 
    will be in columns of [heading,attitude,bank].

    Euler angle convention - similar to NASA standard airplane, but with y and z axes 
    swapped to conform with x3d. (in order of application)
        1.0 rotation about y-axis
        2.0 rotation about z-axis
        3.0 rotation about x-axis
    """
    qw = q[:,0]
    qx = q[:,1]
    qy = q[:,2]
    qz = q[:,3]

    head = scipy.zeros((q.shape[0],))
    atti = scipy.zeros((q.shape[0],))
    bank = scipy.zeros((q.shape[0],))

    test = qx*qy - qz*qw # test for north of south pole

    # Points not at north or south pole
    mask0 = scipy.logical_and(test <= tol, test >= -tol)
    qw_0 = qw[mask0]
    qx_0 = qx[mask0]
    qy_0 = qy[mask0]
    qz_0 = qz[mask0]
    head[mask0] = scipy.arctan2(2.0*qy_0*qw_0 - 2.0*qx_0*qz_0, 1.0 - 2.0*qy_0**2 - 2.0*qz_0**2)
    atti[mask0] = scipy.arcsin(2.0*qx_0*qy_0 + 2.0*qz_0*qw_0)
    bank[mask0] = scipy.arctan2(2.0*qx_0*qw_0 - 2.0*qy_0*qz_0, 1.0 - 2.0*qx_0**2 - 2.0*qz_0**2)

    # Points at north pole
    mask1 = test > tol
    qw_1 = qw[mask1]
    qx_1 = qx[mask1]
    qy_1 = qy[mask1]
    qz_1 = qz[mask1]
    head[mask1] = 2.0*scipy.arctan2(qx_1,qw_1)
    atti[mask1] = scipy.arcsin(2.0*qx_1*qy_1 + 2.0*qz_1*qw_1)
    bank[mask1] = scipy.zeros((qw_1.shape[0],))

    # Points at south pole
    mask2 = test < -tol
    qw_2 = qw[mask2]
    qx_2 = qx[mask2]
    qy_2 = qy[mask2]
    qz_2 = qz[mask2]
    head[mask2] = -2.0*scipy.arctan2(qx_2,qw_2)
    atti[mask2] = scipy.arcsin(2.0*qx_2*qy_2 + 2.0*qz_2*qw_2)
    bank[mask2] = scipy.zeros((qw_2.shape[0],))

    euler_angs = scipy.zeros((q.shape[0],3))
    euler_angs[:,0] = head
    euler_angs[:,1] = atti
    euler_angs[:,2] = bank
    return euler_angs
 def update(self, order, dt=0.1):
   angle = self.X[0]
   V = 150*speed(self.X)
   order_stick = order + sp.arctan2(self.X[2], self.X[1])/sp.pi/2
   dx0 = self.k*(windForce(self.X, 400) +0.)*(order_stick-0.*sp.sin(sp.arctan2(self.X[2], self.X[1])-sp.pi/2))
   dx1 = -V*sp.sin(angle) + self.kdrift*order*sp.cos(angle) 
   dx2 = V*sp.cos(angle) + self.kdrift*order*sp.sin(angle)-30
   dX = dt*np.array([dx0[0], dx1[0], dx2[0]])
   self.X = self.X + dX
   self.X = np.array([self.X[0], self.X[1], np.max([0, self.X[2]])])
Пример #8
0
def cart2sph(xyz):
    """ Radius, azimuth follow the canonical definition.
    Elevation is the angle in [-pi, pi], with 0 being the
    isoluminant plane (z = 0 in cartesian coordinates).
    """
    rae = sp.zeros_like(xyz)
    x, y, z = xyz[..., 0], xyz[..., 1], xyz[..., 2]
    rae[..., 0] = sp.sqrt(x**2 + y**2 + z**2)  # radius
    rae[..., 1] = sp.arctan2(y, x)  # azimuth
    rae[..., 2] = sp.arctan2(z, sp.sqrt(x**2 + y**2))  # elevation
    return rae
Пример #9
0
 def update(self, order, dt=0.1):
     angle = self.X[0]
     V = 150 * speed(self.X)
     order_stick = order + sp.arctan2(self.X[2], self.X[1]) / sp.pi / 2
     dx0 = self.k * (windForce(self.X, 400) + 0.) * (
         order_stick -
         0. * sp.sin(sp.arctan2(self.X[2], self.X[1]) - sp.pi / 2))
     dx1 = -V * sp.sin(angle) + self.kdrift * order * sp.cos(angle)
     dx2 = V * sp.cos(angle) + self.kdrift * order * sp.sin(angle) - 30
     dX = dt * np.array([dx0[0], dx1[0], dx2[0]])
     self.X = self.X + dX
     self.X = np.array([self.X[0], self.X[1], np.max([0, self.X[2]])])
Пример #10
0
def matrixToEuler(m,order='Aerospace',inDegrees=True):
    if order == 'Aerospace' or order == 'ZYX':
        sp = -m[2,0]
        if sp < (1-EPS):
            if sp > (-1+EPS):
                p = arcsin(sp)
                r = arctan2(m[2,1],m[2,2])
                y = arctan2(m[1,0],m[0,0])
            else:
                p = -pi/2.
                r = 0
                y = pi-arctan2(-m[0,1],m[0,2])
        else:
            p = pi/2.
            y = arctan2(-m[0,1],m[0,2])
            r = 0
        
        if inDegrees:
            return degrees((y,p,r))
        else:
            return (y,p,r)
    elif order == 'BVH' or order == 'ZXY':
        sx = m[2,1]
        if sx < (1-EPS):
            if sx > (-1+EPS):
                x = arcsin(sx)
                z = arctan2(-m[0,1],m[1,1])
                y = arctan2(-m[2,0],m[2,2])
            else:
                x = -pi/2
                y = 0
                z = -arctan2(m[0,2],m[0,0])
        else:
            x = pi/2
            y = 0
            z = arctan2(m[0,2],m[0,0])
        if inDegrees:
            return degrees((z,x,y))
        else:
            return (z,x,y)

    elif order == "ZXZ":
        x = arccos(m[2,2])
        z2 = arctan2(m[2,0],m[2,1])
        z1 = arctan2(m[0,2],-m[1,2])
        if inDegrees:
            return degrees((z1,x,z2))
        else:
            return (z1,x,z2)
Пример #11
0
def detect_skew(img, min_angle=-20, max_angle=20, quality='low'):
    img = sp.atleast_2d(img)
    rows, cols = img.shape
    min_min_angle = min_angle
    max_max_angle = max_angle

    if quality == 'low':
        resolution = sp.arctan2(2.0, cols) * 180.0 / sp.pi
        min_target_size = 100
        resize_order = 1
    elif quality == 'high':
        resolution = sp.arctan2(1.0, cols) * 180.0 / sp.pi
        min_target_size = 300
        resize_order = 3
    else:
        resolution = sp.arctan2(1.0, cols) * 180.0 / sp.pi
        min_target_size = 200
        resize_order = 2

    # resize the image so it's faster to work with
    min_size = min(rows, cols)
    target_size = min_target_size if min_size > min_target_size else min_size
    resize_ratio = float(target_size) / min_size
    img = imresize(img, resize_ratio)
    rows, cols = img.shape

    img *= -1
    img += 255

    while True:
        current_resolution = (max_angle - min_angle) / 30.0
        angles = sp.linspace(min_angle, max_angle, 31)

        # do the hough transfer
        hough_out = _hough_transform(img, angles * sp.pi / 180)
        
        # determine which angle gives max variance
        variances = sp.var(hough_out, axis=0)
        max_variance_index = sp.argmax(variances)
        best_angle = min_angle + max_variance_index * current_resolution

        if current_resolution < resolution:
            break

        # update the angle range
        min_angle = max(best_angle - current_resolution, min_min_angle)
        max_angle = min(best_angle + current_resolution, max_max_angle)

    return best_angle
Пример #12
0
def xyz2lbr (x, y, z, d0=dsun):
    """ convert galactic xyz into sun-centered lbr coordinates; derived from stCoords.c"""
    #if len(xyz.shape) > 1:  x, y, z = xyz[:,0], xyz[:,1], xyz[:,2]
    #else:                   x, y, z = xyz[0], xyz[1], xyz[2]
    xsun = x + d0
    temp = (xsun*xsun) + (y*y)
    l = sc.arctan2(y, xsun) * deg
    b = sc.arctan2(z, sc.sqrt(temp)) * deg
    r = sc.sqrt(temp + (z*z))
    if type(l) == type(arr):
        for i in range(len(l)):
            if l[i] < 0.0:  l[i] = l[i] + 360.0
    else:
        if l < 0.0:  l = l + 360.0
    return l,b,r
Пример #13
0
    def fast_kappa(z1,r1,w1,d1,z2,r2,w2,d2,ang,same_half_plate, \
                   th1, phi1, th2, phi2): # SY
        rp = abs(r1-r2[:,None])*sp.cos(ang/2)
        rt = (r1+r2[:,None])*sp.sin(ang/2)
        d12 = d1*d2[:, None]
        w12 = w1*w2[:,None]

        w = (rp>=kappa.rp_min) & (rp<=kappa.rp_max) & \
            (rt<=kappa.rt_max) & (rt>=kappa.rp_min)

        rp = rp[w]
        rt = rt[w]
        w12 = w12[w]
        d12 = d12[w]

        x = (phi2 - phi1)/sp.sin(th1) # SY
        y = th2 - th1                 # SY
        gamma_ang = sp.arctan2(y,x)   # SY

        #-- getting model and first derivative
        xi_model = kappa.xi2d(rt, rp, grid=False)
        xip_model = kappa.xi2d(rt, rp, dx=1, grid=False)
        R = 1/(xip_model*rt) # SY
       
        ska = sp.sum( (d12 - xi_model)/R*w12 )
        wka = sp.sum( w12/R**2 ) 
        gam1 = -2*sp.cos(2*gamma_ang) * sp.sum( (d12 - xi_model)/R*w12 ) # SY
        gam2 = 2*sp.sin(2*gamma_ang) * sp.sum( (d12 - xi_model)/R*w12 ) # SY

        return ska, wka, gam1, gam2 # SY
Пример #14
0
def geodetic_from_ecef(x, y, z):
    #http://code.google.com/p/pysatel/source/browse/trunk/coord.py?r=22
    """Convert ECEF coordinates to geodetic.
    J. Zhu, "Conversion of Earth-centered Earth-fixed coordinates \
    to geodetic coordinates," IEEE Transactions on Aerospace and \
    Electronic Systems, vol. 30, pp. 957-961, 1994."""

    # load wgs constants
    wgs = wgs_constants()
    a = wgs.a
    b = wgs.b
    esq = wgs.esq
    e1sq = wgs.e1sq

    r = sqrt(x * x + y * y)
    Esq = a * a - b * b
    F = 54 * b * b * z * z
    G = r * r + (1 - esq) * z * z - esq * Esq
    C = (esq * esq * F * r * r) / (pow(G, 3))
    S = cbrt(1 + C + sqrt(C * C + 2 * C))
    P = F / (3 * pow((S + 1 / S + 1), 2) * G * G)
    Q = sqrt(1 + 2 * esq * esq * P)
    r_0 =  -(P * esq * r) / (1 + Q) + sqrt(0.5 * a * a*(1 + 1.0 / Q) - \
        P * (1 - esq) * z * z / (Q * (1 + Q)) - 0.5 * P * r * r)
    #U = sqrt(pow((r - esq * r_0), 2) + z * z)
    V = sqrt(pow((r - esq * r_0), 2) + (1 - esq) * z * z)
    Z_0 = b * b * z / (a * V)
    #h = U * (1 - b * b / (a * V))
    lat = arctan((z + e1sq * Z_0) / r)
    lon = arctan2(y, x)
    return lat, lon
Пример #15
0
def resolve_tri(A,B,a,b,up=True):
    AB=A-B
    c=l.norm(AB)
    aa=s.arctan2(AB[1],AB[0])
    bb=s.arccos((b**2+c**2-a**2)/(2*b*c))
    if up: return B+b*s.array((s.cos(aa+bb),s.sin(aa+bb)))
    else: return B+b*s.array((s.cos(aa-bb),s.sin(aa-bb)))
Пример #16
0
def rect_to_cyl(X,Y,Z):
    """
    NAME:

       rect_to_cyl

    PURPOSE:

       convert from rectangular to cylindrical coordinates

    INPUT:

       X, Y, Z - rectangular coordinates

    OUTPUT:

       R,phi,z

    HISTORY:

       2010-09-24 - Written - Bovy (NYU)

    """
    R= sc.sqrt(X**2.+Y**2.)
    phi= sc.arctan2(Y,X)
    return (R,phi,Z)
Пример #17
0
def vec2polar(vec):
    '''transform a vector to polar axis.'''
    r = np.linalg.norm(vec, axis=-1, keepdims=True)
    theta = np.arccos(vec[..., 2:3] / r)
    phi = np.arctan2(vec[..., 1:2], vec[..., :1])
    res = np.concatenate([r, theta, phi], axis=-1)
    return res
Пример #18
0
def draw_probe_ellipse(xy, covar, alpha, color=None, **kwargs):
    """Generates an ellipse object based of a point and related
    covariance assuming 2 dimensions
   
    Args:
        xy (2x1 array): (x,y) of the ellipse position
        covar (2x2 array): covariance matrix of landmark point
        alpha (float):
   
    Kwargs:   
        color (string): matplotlib color convention

    Returns:
         (matplotlib Ellipse Object): Ellipse object for drawing
 
    """

    b24ac = scipy.sqrt(pow(covar[0, 0] - covar[1, 1], 2) + 4 * covar[0, 1])
    c2inv = chi2.ppf(alpha, 2.) / 1e2

    a = scipy.real(scipy.sqrt(c2inv * .5 *
                              (covar[0, 0] + covar[1, 1] + b24ac)))
    b = scipy.real(scipy.sqrt(c2inv * .5 *
                              (covar[0, 0] + covar[1, 1] - b24ac)))

    theta = .5 * scipy.arctan2(2 * covar[0, 1], covar[0, 0] - covar[1, 1])

    return Ellipse(xy, a, b, angle=theta, color=color, **kwargs)
Пример #19
0
def groove(inclination, rdh, brise, minorgroove):
    #~print "newtongroove\n"
    #global strutrise, dthgroove
    dthgroove = math.pi
    #~print "inclination=%f, rdh=%f, brise=%f, minorgroove=%f"%(inclination,rdh,brise,minorgroove)
    sa = math.sin(dthgroove - math.pi)
    ca = math.cos(dthgroove - math.pi)
    strutrise = rdh*math.tan(inclination)*math.sqrt(math.pow(sa,2) +\
                math.pow(1 + ca,2)) # rise of strut along its length
    f = dthgroove / (2 * math.pi) * brise - strutrise - minorgroove
    #~print "dthgroove=%s\nsa=%s\nca=%s\nstrutrise=%s\nf=%s"%(dthgroove, sa,ca,strutrise,f)
    for iter in range(
            3
    ):  # use Newton's method to find radius on which bases fall for this loop (default: 3 steps)
        dstrutdth = rdh*math.tan(inclination)* 0.5*math.pow(math.pow(sa, 2) + \
                    math.pow(1+ca, 2), -0.5) \
            *(2*sa*ca - 2*(1 + ca)*sa)
        dfdth = brise / (2 * math.pi) - dstrutdth

        dthgroove = dthgroove - f / dfdth
        #~print "dstrutdth=%s dfdth=%s dthgroove=%s"%(dstrutdth, dfdth, dthgroove)
        sa = math.sin(dthgroove - math.pi)
        ca = math.cos(dthgroove - math.pi)
        strutrise = rdh * math.tan(inclination) * math.sqrt(
            pow(sa, 2) + pow(1 + ca, 2))
        f = dthgroove / (2 * math.pi) * brise - strutrise - minorgroove
        #~print 'sa=%f ca=%f strutrise=%f f=%f'%(sa, ca, strutrise, f)

    strutlength = rdh / math.cos(inclination) * math.sqrt(
        pow(sa, 2) + pow(1 + ca, 2))  #length of strut
    strutangle = math.pi + scipy.arctan2(
        rdh * sa, rdh * (1 + ca))  # angle of strut relative to x axis
    # with origin at one end of strut and rotating
    # around z axis
    return dthgroove, strutrise, strutlength, strutangle
Пример #20
0
def measurement_model(particle, z):
    """ compute the expected measurement for a landmark
    and the Jacobian with respect to the landmark"""

    # extract the id of the landmark
    landmarkId = z['id']
    # two 2D vector for the position (x,y) of the observed landmark
    landmarkPos = particle['landmarks'][landmarkId]['mu']
    
    # TODO: use the current state of the particle to predict the measurment
    landmarkX = landmarkPos[0]
    landmarkY = landmarkPos[1]
    
    expectedRange = scipy.sqrt(pow(landmarkX - particle.pose[0], 2) + pow(landmarkY - particle.pose[1], 2))
    expectedBearing = normalize_angle(scipy.arctan2(landmarkY - particle.pose[1], landmarkX - particle.pose[0]) - particle.pose[2])

    h = scipy.array([expectedRange, expectedBearing])
    
    # TODO: Compute the Jacobian H of the measurement function h wrt the landmark location
    H = scipy.zeros(2,2)

    H[0,0] = (landmarkX - particle.pose[0])/expectedRange
    H[0,1] = (landmarkY - particle.pose[1])/expectedRange
    H[1,0] = (particle.pose[1] - landmarkY)/pow(expectedRange, 2)
    H[1,1] = (landmarkX - particle.pose[0])/pow(expectedRange, 2)
    
    return h, H
Пример #21
0
    def read_data(self):

        unit = 1 + int(self.Lbu.curselection()[0])

        if (unit == 1):
            self.ff, self.zr, self.zi, self.num = read_three_columns_from_dialog(
                'Select Input File', self.master)
        else:
            self.ff, self.zc, self.num = read_two_columns_from_dialog(
                'Select Input File', self.master)
            self.zi = zeros(self.num, 'f')
            self.zr = zeros(self.num, 'f')

            for i in range(0, self.num):
                arg = self.ph[i] * (pi / 180)
                self.zi[i] = self.zc[i].real
                self.zr[i] = self.zc[i].imag

        self.zz = zeros(self.num, 'f')
        self.ph = zeros(self.num, 'f')

        for i in range(0, self.num):
            self.zz[i] = sqrt(self.zr[i]**2 + self.zi[i]**2)
            self.ph[i] = arctan2(self.zi[i], self.zr[i]) * 180 / pi

        self.button_replot.config(state='normal')

        self.plotd(self)
Пример #22
0
def get_freq_response(f0, f1, m, b, n=5000):
    """
    Get frequency response for system. Returns gain, phase and frequency.   

    Inputs:
    f0 = starting frequency
    f1 = stopping frequency
    m  = mass of system
    b  = damping coefficient

    Outputs:
    mag_db = gain (output/input)
    phase  = phase shift in degrees
    f      = array of frequencies
    """
    def transfer_func(s, m, b):
        return 1.0 / (m * s + b)

    f = scipy.linspace(f0, f1, n)
    x = 2.0 * scipy.pi * f * 1j
    y = transfer_func(x, m, b)
    mag = scipy.sqrt(y.real**2 + y.imag**2)
    phase = scipy.arctan2(y.imag, y.real)
    phase = scipy.rad2deg(phase)
    mag_db = 20.0 * scipy.log10(mag)
    return mag_db, phase, f
Пример #23
0
def rect_to_cyl(X, Y, Z):
    """
    NAME:

       rect_to_cyl

    PURPOSE:

       convert from rectangular to cylindrical coordinates

    INPUT:

       X, Y, Z - rectangular coordinates

    OUTPUT:

       R,phi,z

    HISTORY:

       2010-09-24 - Written - Bovy (NYU)

    """
    R = sc.sqrt(X**2. + Y**2.)
    phi = sc.arctan2(Y, X)
    if isinstance(phi, nu.ndarray): phi[phi < 0.] += 2. * nu.pi
    elif phi < 0.: phi += 2. * nu.pi
    return (R, phi, Z)
Пример #24
0
    def fast_kappa_true(z1, r1, zq, rq, ang, ang_lens, \
                        th1, phi1, thq, phiq):

        rp = abs(r1[:, None] - rq) * sp.cos(ang / 2)
        rt = (r1[:, None] + rq) * sp.sin(ang / 2)
        rp_lens = abs(r1[:, None] - rq) * sp.cos(ang_lens / 2)
        rt_lens = (r1[:, None] + rq) * sp.sin(ang_lens / 2)

        w = (rp>=kappa.rp_min) & (rp<=kappa.rp_max) & \
            (rt<=kappa.rt_max) & (rt>=kappa.rt_min)

        rp = rp[w]
        rt = rt[w]
        rp_lens = rp_lens[w]
        rt_lens = rt_lens[w]

        x = (phiq - phi1) * sp.sin(th1)
        y = thq - th1
        gamma_ang = sp.arctan2(y, x)

        #-- getting model and first derivative
        xi_model = kappa.xi2d(rt, rp, grid=False)
        xi_lens = kappa.xi2d(rt_lens, rp_lens, grid=False)
        xip_model = kappa.xi2d(rt, rp, dx=1, grid=False)
        R = 1 / (xip_model * rt)

        ska = sp.sum((xi_lens - xi_model) / R)
        wka = sp.sum(1 / R**2)
        gam1 = 4 * sp.cos(2 * gamma_ang) * sp.sum((xi_lens - xi_model) / R)
        gam2 = 4 * sp.sin(2 * gamma_ang) * sp.sum((xi_lens - xi_model) / R)

        return ska, wka, gam1, gam2
Пример #25
0
    def fast_kappa(z1,r1,w1,d1,zq,rq,wq,ang, \
                   th1, phi1, thq, phiq):
        rp = (r1[:, None] - rq) * sp.cos(ang / 2)
        rt = (r1[:, None] + rq) * sp.sin(ang / 2)

        we = w1[:, None] * wq
        de = d1[:, None]

        w = (rp>=kappa.rp_min) & (rp<=kappa.rp_max) & \
            (rt<=kappa.rt_max) & (rt>=kappa.rt_min)

        rp = rp[w]
        rt = rt[w]
        we = we[w]
        de = de[w]

        x = (phiq - phi1) * sp.sin(th1)
        y = thq - th1
        gamma_ang = sp.arctan2(y, x)

        #-- getting model and first derivative
        xi_model = kappa.xi2d(rt, rp, grid=False)
        xip_model = kappa.xi2d(rt, rp, dx=1, grid=False)

        #-- weight of estimator
        R = 1 / (xip_model * rt)

        ska = sp.sum((de - xi_model) / R * we)
        wka = sp.sum(we / R**2)
        gam1 = 4 * sp.cos(2 * gamma_ang) * sp.sum((de - xi_model) / R * we)
        gam2 = 4 * sp.sin(2 * gamma_ang) * sp.sum((de - xi_model) / R * we)

        return ska, wka, gam1, gam2
Пример #26
0
def ecef2geodetic(x, y, z):
    """Convert ECEF coordinates to geodetic.
    J. Zhu, "Conversion of Earth-centered Earth-fixed coordinates \
    to geodetic coordinates," IEEE Transactions on Aerospace and \
    Electronic Systems, vol. 30, pp. 957-961, 1994."""
    a = 6378.137
    b = 6356.7523142
    esq = 6.69437999014 * 0.001
    e1sq = 6.73949674228 * 0.001

    # return h in kilo
    r = sqrt(x * x + y * y)
    Esq = a * a - b * b
    F = 54 * b * b * z * z
    G = r * r + (1 - esq) * z * z - esq * Esq
    C = (esq * esq * F * r * r) / (pow(G, 3))
    S = sqrt(1 + C + sqrt(C * C + 2 * C))
    P = F / (3 * pow((S + 1 / S + 1), 2) * G * G)
    Q = sqrt(1 + 2 * esq * esq * P)
    r_0 =  -(P * esq * r) / (1 + Q) + sqrt(0.5 * a * a*(1 + 1.0 / Q) - \
        P * (1 - esq) * z * z / (Q * (1 + Q)) - 0.5 * P * r * r)
    U = sqrt(pow((r - esq * r_0), 2) + z * z)
    V = sqrt(pow((r - esq * r_0), 2) + (1 - esq) * z * z)
    Z_0 = b * b * z / (a * V)
    h = U * (1 - b * b / (a * V))
    lat = arctan((z + e1sq * Z_0) / r)
    lon = arctan2(y, x)
    return degrees(lat), degrees(lon), h
Пример #27
0
def rect_to_cyl(X,Y,Z):
    """
    NAME:

       rect_to_cyl

    PURPOSE:

       convert from rectangular to cylindrical coordinates

    INPUT:

       X, Y, Z - rectangular coordinates

    OUTPUT:

       R,phi,z

    HISTORY:

       2010-09-24 - Written - Bovy (NYU)

    """
    R= sc.sqrt(X**2.+Y**2.)
    phi= sc.arctan2(Y,X)
    if isinstance(phi,nu.ndarray): phi[phi<0.]+= 2.*nu.pi
    elif phi < 0.: phi+= 2.*nu.pi
    return (R,phi,Z)
Пример #28
0
def north_direction(lat):
    '''get the north direction relative to image positive y coordinate'''
    dlatdx = nd.filters.sobel(lat,axis=1,mode='constant',cval=sp.nan) #gradient in x-direction
    dlatdy = nd.filters.sobel(lat,axis=0,mode='constant',cval=sp.nan)
    ydir = lat[-1,0] -lat[0,0] # check if latitude is ascending or descending in y axis
    # same step might have to be done with x direction.
    return sp.arctan2(dlatdx,dlatdy*sp.sign(ydir) )*180/sp.pi
Пример #29
0
 def _update_strain(self):
     self.e = (self.exy - self.eyx) / 2
     self.k = (self.exx + self.eyy) * 1000000. / 2
     self.strain = scipy.sqrt((self.exx - self.eyy) * (self.exx - self.eyy) + (self.exy + self.eyx) * (self.exy + self.eyx)) * 1000000.
     self.k_max = self.k + self.strain / 2
     self.k_min = self.k - self.strain / 2
     self.az = scipy.degrees(2 * scipy.arctan2(self.exy + self.eyx, self.eyy - self.exx))
Пример #30
0
def north_direction(lat):
    '''get the north direction relative to image positive y coordinate'''
    dlatdx = nd.filters.sobel(lat,axis=1,mode='constant',cval=sp.nan) #gradient in x-direction
    dlatdy = nd.filters.sobel(lat,axis=0,mode='constant',cval=sp.nan)
    ydir = lat[-1,0] -lat[0,0] # check if latitude is ascending or descending in y axis
    # same step might have to be done with x direction.
    return sp.arctan2(dlatdx,dlatdy*sp.sign(ydir) )*180/sp.pi
Пример #31
0
def align_to_world(gnss_position, vectors, motion_time):
    """
    Align accelerations to world system (x axis going to east, y to north)

    :param gnss_position: 3xn numpy array. positions from gnss data
    :param vectors: 3xn numpy array
    :param stationary_times: list of tuples
    :param angular_positions:
    :return: 2 numpy array: 3xn numpy array of rotated accelerations and 4xn angular positions as quaternions
    """

    from scipy import sin, cos, arctan2
    # get angle of rotation
    angle_gnss = np.arctan2(gnss_position[1, motion_time],
                            gnss_position[0, motion_time])
    # TODO pay attention using acceleration
    angle_vector = arctan2(vectors[1, motion_time], vectors[0, motion_time])
    # rotation_angle = angle_gnss - angle_vector
    rotation_angle = angle_gnss
    message = "Rotation vector to {} degrees to align to world".format(
        np.rad2deg(rotation_angle))
    print(message)
    new_vectors = vectors.copy()
    # rotate vector in xy plane
    new_vectors[0] = cos(rotation_angle) * vectors[0] - sin(
        rotation_angle) * vectors[1]
    new_vectors[1] = sin(rotation_angle) * vectors[0] + cos(
        rotation_angle) * vectors[1]
    return new_vectors
    def thinningEdges(self):
        self.gradDir = scipy.arctan2(self.gradDY, self.gradDX)

        self.gradCopy = self.grad.copy()
        for currRow in range(1, self.width - 1):
            for currCol in range(1, self.height - 1):
                up = currCol - 1
                down = currCol + 1
                left = currRow - 1
                right = currRow + 1
                error = 22.5

                if self.gradDir[currRow][currCol] >= 0 and self.gradDir[currRow][currCol] < 0 + error or \
                    self.gradDir[currRow][currCol] >= 360 and self.gradDir[currRow][currCol] < 360 - error or \
                    self.gradDir[currRow][currCol] >= 180 - error and self.gradDir[currRow][currCol] < 180 + error :
                    if self.gradCopy[currRow][currCol] <= self.gradCopy[currRow][down] or \
                               (self.gradCopy[currRow][currCol] <= self.gradCopy[currRow][up]):
                        self.grad[currRow][currCol] = 0
                elif self.gradDir[currRow][currCol] >= 45 - error and self.gradDir[currRow][currCol] < 45 + error or \
                    self.gradDir[currRow][currCol] >= 135 - error and self.gradDir[currRow][currCol] < 135 + error:
                    if (self.gradCopy[currRow][currCol] <= self.gradCopy[left][down]) or \
                        (self.gradCopy[currRow][currCol] <= self.gradCopy[right][up]):
                        self.grad[currRow][currCol] = 0
                elif self.gradDir[currRow][currCol] >= 90 - error and self.gradDir[currRow][currCol] < 90 + error or \
                    self.gradDir[currRow][currCol] >= 270 - error and self.gradDir[currRow][currCol] < 270 + error:
                    if (self.gradCopy[currRow][currCol] <= self.gradCopy[right][currCol]) or \
                        (self.gradCopy[currRow][currCol] <= self.gradCopy[left][currCol]):
                        self.grad[currRow][currCol] = 0
                else:  ## for angles in second and forth quadrant
                    if (self.gradCopy[currRow][currCol] <= self.gradCopy[right][down]) or \
                        (self.gradCopy[currRow][currCol] <= self.gradCopy[left][up]):
                        self.grad[currRow][currCol] = 0
Пример #33
0
def rotation_matrix_from_cross_prod(a,b):
    """
    Returns the rotation matrix which rotates the
    vector :samp:`a` onto the the vector :samp:`b`.
    
    :type a: 3 sequence of :obj:`float`
    :param a: Vector to be rotated on to :samp:`{b}`.
    :type b: 3 sequence of :obj:`float`
    :param b: Vector.
    :rtype: :obj:`numpy.array`
    :return: 3D rotation matrix.
    """

    crs = np.cross(a,b)
    dotProd = np.dot(a,b)
    crsNorm = sp.linalg.norm(crs)
    eps = sp.sqrt(sp.finfo(a.dtype).eps)
    r = sp.eye(a.size, a.size, dtype=a.dtype)
    if (crsNorm > eps):
        theta = sp.arctan2(crsNorm, dotProd)
        r = axis_angle_to_rotation_matrix(crs, theta)
    elif (dotProd < 0):
        r = -r
    
    return r
Пример #34
0
    def fast_kappa(z1, r1, w1, d1, z2, r2, w2, d2, ang, same_half_plate, th1,
                   phi1, th2, phi2):
        rp = abs(r1 - r2[:, None]) * sp.cos(ang / 2)
        rt = (r1 + r2[:, None]) * sp.sin(ang / 2)
        d12 = d1 * d2[:, None]
        w12 = w1 * w2[:, None]

        w = (rp>=kappa.rp_min) & (rp<=kappa.rp_max) & \
            (rt<=kappa.rt_max) & (rt>=kappa.rt_min)

        rp = rp[w]
        rt = rt[w]
        w12 = w12[w]
        d12 = d12[w]

        x = (phi2 - phi1) * sp.sin(th1)
        y = th2 - th1
        gamma_ang = sp.arctan2(y, x)

        #-- getting model and first derivative
        xi_model = kappa.xi2d(rt, rp, grid=False)
        xip_model = kappa.xi2d(rt, rp, dx=1, grid=False)

        #-- this is the weight of the estimator
        R = 1 / (xip_model * rt)

        ska = sp.sum((d12 - xi_model) / R * w12)
        gam1 = 4 * sp.cos(2 * gamma_ang) * sp.sum(
            (d12 - xi_model) / R * w12)  # SY
        gam2 = 4 * sp.sin(2 * gamma_ang) * sp.sum(
            (d12 - xi_model) / R * w12)  # SY
        wka = sp.sum(w12 / R**2)
        nka = 1. * d12.size

        return ska, wka, gam1, gam2, nka
Пример #35
0
def ecef2geodetic(x, y, z):
    """
    Convert ecef 2 geodetic
        Convert ECEF coordinates to geodetic.
        J. Zhu, "Conversion of Earth-centered Earth-fixed coordinates
        to geodetic coordinates," IEEE Transactions on Aerospace and
        Electronic Systems, vol. 30, pp. 957-961, 1994.
    """

    a = 6378137
    b = 6356752.3142

    esq = 0.00669437999013
    e1sq = 6.73949674228 * 0.001

    r = sqrt(x * x + y * y)
    Esq = a * a - b * b
    F = 54 * b * b * z * z
    G = r * r + (1 - esq) * z * z - esq * Esq
    C = (esq * esq * F * r * r) / (pow(G, 3))
    S = sqrt(1 + C + sqrt(C * C + 2 * C))
    P = F / (3 * pow((S + 1 / S + 1), 2) * G * G)
    Q = sqrt(1 + 2 * esq * esq * P)
    r_0 = -(P * esq * r) / (1 + Q) + sqrt(0.5 * a * a * (1 + 1.0 / Q) - P *
                                          (1 - esq) * z * z /
                                          (Q * (1 + Q)) - 0.5 * P * r * r)
    U = sqrt(pow((r - esq * r_0), 2) + z * z)
    V = sqrt(pow((r - esq * r_0), 2) + (1 - esq) * z * z)
    Z_0 = b * b * z / (a * V)
    h = U * (1 - b * b / (a * V))
    lat = arctan((z + e1sq * Z_0) / r)
    lon = arctan2(y, x)

    return degrees(lat), degrees(lon), h
Пример #36
0
def xyz2longlat(x,y,z):
    """ converts cartesian x,y,z coordinates into spherical longitude and latitude """
    r = sc.sqrt(x*x + y*y + z*z)
    long = sc.arctan2(y,x)
    d = sc.sqrt(x*x + y*y)
    lat = sc.arcsin(z/r)
    return long*deg, lat*deg, r
Пример #37
0
def cartesian_to_sky(position, wrap=True, degree=True):
    """Transform cartesian coordinates into distance, RA, Dec.

	Parameters
	----------
	position : array of shape (N,3)
		position in cartesian coordinates.
	wrap : bool, optional
		whether to wrap ra into [0,2*pi]
	degree : bool, optional
		whether RA, Dec are in degree (True) or radian (False).

	Returns
	-------
	dist : array
		distance.
	ra : array
		RA.
	dec : array
		Dec.

	"""
    dist = distance(position)
    ra = scipy.arctan2(position[:, 1], position[:, 0])
    if wrap: ra %= 2. * constants.pi
    dec = scipy.arcsin(position[:, 2] / dist)
    if degree: return dist, ra / constants.degree, dec / constants.degree
    return dist, ra, dec
Пример #38
0
    def two_d_ellipse(self,proj_vars,p,**kwargs):
        """Return the 2d projection as a matplotlib Ellipse object for the given p values
        Parameters
        ----------
        proj_vars : array that is 1 for the projection dimension, and 0 other wise
                    i.e. array([0,0,1,0,1]) will project 5d ellipsoid onto the plane
                    span by the 3rd and 5th variable.
        p         : the percent of points contained in the ellipsoid, either a single
                     value of a list of values i.e. 0.68 or [0.68,0.955],

                     if p is a list then a list of Ellipse objects will be returned, one for each p value
        Keywords
        --------
        kwargs : keywords to be passed into the matplotlib Ellipse object

        Return
        ------
        ells : matplotlib Ellipse object
        """
        mu,u,s=self.proj(proj_vars) #get the mean, eigenvectors, and eigenvales for projected array
        try: #if a list get the length
            l=len(p)
        except: #if not then make it a list of length 1
            l=1
            p=[p]
        invp=st.chi.ppf(p,self.dim) #scale it using a chi distribution (see, now we scale it)
        angle=rad2deg(arctan2(u[0,1],u[0,0])) #angle the first eignevector makes with the x-axis
        ells=[] #list to hold the Ellipse objects
        for i in invp:
            ells.append(Ellipse(xy=mu,width=s[0]*i*2,height=s[1]*i*2,angle=angle,**kwargs))#make the Ellipse objects, the *2 is needed since Ellipse takes the full axis vector
        if l==1: #if only one p values was given return the Ellipse object (not as a list)
            return ells[0]
        else: #else return the list of Ellipse objects
            return ells
Пример #39
0
def rotation_matrix_from_cross_prod(a, b):
    """
    Returns the rotation matrix which rotates the
    vector :samp:`a` onto the the vector :samp:`b`.
    
    :type a: 3 sequence of :obj:`float`
    :param a: Vector to be rotated on to :samp:`{b}`.
    :type b: 3 sequence of :obj:`float`
    :param b: Vector.
    :rtype: :obj:`numpy.array`
    :return: 3D rotation matrix.
    """

    crs = np.cross(a, b)
    dotProd = np.dot(a, b)
    crsNorm = sp.linalg.norm(crs)
    eps = sp.sqrt(sp.finfo(a.dtype).eps)
    r = sp.eye(a.size, a.size, dtype=a.dtype)
    if (crsNorm > eps):
        theta = sp.arctan2(crsNorm, dotProd)
        r = axis_angle_to_rotation_matrix(crs, theta)
    elif (dotProd < 0):
        r = -r

    return r
Пример #40
0
 def __init__(self, output='out', input='in', \
              mag=None, phase=None, coh=None, \
              freqlim=[], maglim=[], phaselim=[], \
              averaged='not specified', \
              seedfreq=-1, seedphase=0,
              labels=[], legloc=-1, compin=[]):
     self.output = output
     self.input = input
     if len(compin) > 0:
        if mag is None:
           self.mag = squeeze(colwise(abs(compin)))
        if phase is None:
           self.phase = squeeze(colwise(arctan2(imag(compin),real(compin))*180.0/pi))
     else:
         self.mag = squeeze(mag)
         self.phase = squeeze(phase)
     self.coh = coh
     self.averaged = averaged
     self.seedfreq = seedfreq
     self.seedphase = seedphase
     self.freqlim = freqlim
     self.maglim = maglim
     self.phaselim = phaselim
     self.labels = labels
     self.legloc = legloc
Пример #41
0
def compute_ellipse_params(Sigma, ci=0.95):
    """Compute the parameters of the confidence ellipse for the bivariate
    normal distribution with the given covariance matrix.

    Parameters
    ----------
    Sigma : 2d array, (2, 2)
        Covariance matrix of the bivariate normal.
    ci : float or 1d array, optional
        Confidence interval(s) to compute. Default is 0.95.

    Returns
    -------
    a : float or 1d array
        Major axes for each element in `ci`.
    b : float or 1d array
        Minor axes for each element in `ci`.
    ang : float
        Angle of ellipse, in radians.
    """
    ci = scipy.atleast_1d(ci)
    lam, v = scipy.linalg.eigh(Sigma)
    chi2 = [-scipy.log(1.0 - cival) * 2.0 for cival in ci]
    a = [2.0 * scipy.sqrt(chi2val * lam[-1]) for chi2val in chi2]
    b = [2.0 * scipy.sqrt(chi2val * lam[-2]) for chi2val in chi2]
    ang = scipy.arctan2(v[1, -1], v[0, -1])
    return a, b, ang
    def thinningEdges(self):
        self.gradDir = scipy.arctan2(self.gradDY, self.gradDX)

        self.gradCopy = self.grad.copy();
        for currRow in range(1, self.width-1):
            for currCol in range(1, self.height-1):
                up = currCol - 1;
                down = currCol + 1;
                left = currRow - 1;
                right = currRow + 1;
                error = 22.5
                
                if self.gradDir[currRow][currCol] >= 0 and self.gradDir[currRow][currCol] < 0 + error or \
                    self.gradDir[currRow][currCol] >= 360 and self.gradDir[currRow][currCol] < 360 - error or \
                    self.gradDir[currRow][currCol] >= 180 - error and self.gradDir[currRow][currCol] < 180 + error :
	                if self.gradCopy[currRow][currCol] <= self.gradCopy[currRow][down] or \
                            (self.gradCopy[currRow][currCol] <= self.gradCopy[currRow][up]):
                            self.grad[currRow][currCol] = 0
                elif self.gradDir[currRow][currCol] >= 45 - error and self.gradDir[currRow][currCol] < 45 + error or \
                    self.gradDir[currRow][currCol] >= 135 - error and self.gradDir[currRow][currCol] < 135 + error:
                    if (self.gradCopy[currRow][currCol] <= self.gradCopy[left][down]) or \
                        (self.gradCopy[currRow][currCol] <= self.gradCopy[right][up]):
                        self.grad[currRow][currCol] = 0
                elif self.gradDir[currRow][currCol] >= 90 - error and self.gradDir[currRow][currCol] < 90 + error or \
                    self.gradDir[currRow][currCol] >= 270 - error and self.gradDir[currRow][currCol] < 270 + error:
                    if (self.gradCopy[currRow][currCol] <= self.gradCopy[right][currCol]) or \
                        (self.gradCopy[currRow][currCol] <= self.gradCopy[left][currCol]):
                        self.grad[currRow][currCol] = 0
 	        else: ## for angles in second and forth quadrant
                    if (self.gradCopy[currRow][currCol] <= self.gradCopy[right][down]) or \
                        (self.gradCopy[currRow][currCol] <= self.gradCopy[left][up]):
                        self.grad[currRow][currCol] = 0
Пример #43
0
def extract_hog(img,ROI):
	#print("first")
	#cellRows = cellCols = 5
	#binCount = 4
#	BlockRowCells = 3
#	BlockColCells = 3
	orientations=8
	pixels_per_cell=(5, 5)#5,5 - 0.9844
	cells_per_block=(3, 3)#3,3
	img = resize(img,(50,50))
	image = rgb2gray(img)

	image = np.atleast_2d(image)
	#hist = hog(img,binCount,(cellCols,cellRows),(BlockRowCells,BlockColCells))
	#hist = np.divide(hog,np.linalg.norm(hog))
	gx = roll(image, 1, axis = 1) - roll(image, -1, axis = 1)
	gx[:,0],gx[:,-1] = 0,0;
	
	gy = roll(image, 1, axis = 0) - roll(image, -1, axis = 0)
	gy[-1,:],gy[0,:] = 0,0;
	matr = np.square(gx) + np.square(gy)
	matr = np.sqrt(matr)
	orientation = arctan2(gy, (gx + 1e-15)) * (180 / pi) + 90

	imx, imy = image.shape
	cx, cy = pixels_per_cell
	bx, by = cells_per_block

	n_cellsx = int(np.floor(imx // cx))  # number of cells in i
	n_cellsy = int(np.floor(imy // cy))  # number of cells in j

    
	or_hist = np.zeros((n_cellsx, n_cellsy, orientations))
	for i in range(orientations):
		
	
		condition = orientation < 180 / orientations * (i + 1)

		tmp = np.where(condition,orientation, 0)
		condition = orientation >= 180 / orientations * i
		tmp = np.where(condition,tmp, 0)
	
		cond2 = tmp > 0
		temp_mag = np.where(cond2, matr, 0)

		or_hist[:,:,i] = uniform_filter(temp_mag, size=(cx, cy))[cx/2::cx, cy/2::cy].T
	numbx = (n_cellsx - bx) + 1
	numby = (n_cellsy - by) + 1
	normb = np.zeros((numbx, numby, bx, by, orientations))

	for i in range(numbx):
		for j in range(numby):
			block = or_hist[i:i + bx, j:j + by, :]
			eps = 1e-5
			normb[i, j, :] = block / sqrt(block.sum() ** 2 + eps)

    
   
	return normb.ravel()
Пример #44
0
def getG(X,Y):
    """
    This function calculates the angular components of a state
    :param X:   X Points
    :param Y:   Y Points
    :return:    Arctan(Y/X)
    """
    return sp.cos(sp.arctan2(Y, X))
Пример #45
0
 def get_verts(self):
     if self.options.mode == "density_graph":
         scale = self.options.resolution
         offset = self.options.centre
     else:
         scale = 1
         offset = [0, 0]
     line = (self.line - offset) / scale
     dy = line[1, 0] - line[0, 0]
     dx = line[1, 1] - line[0, 1]
     wx = self.width / 2 / scale * sp.sin(sp.arctan2(dy, dx))
     wy = -self.width / 2 / scale * sp.cos(sp.arctan2(dy, dx))
     verts = sp.array([[line[0, 1] - wx, line[0, 0] - wy],
                       [line[0, 1] + wx, line[0, 0] + wy],
                       [line[1, 1] + wx, line[1, 0] + wy],
                       [line[1, 1] - wx, line[1, 0] - wy]])
     return verts
Пример #46
0
    def r1(self):
        """returns cylindrical coordinate along second dimension

        Returns:
            numpy array of cylindrical coordinates in radians

        """
        return scipy.arctan2(self.unit[1], self.unit[0])
Пример #47
0
    def r1(self):        
        """returns cylindrical coordinate along second dimension

        Returns:
            numpy array of cylindrical coordinates in radians

        """
        return scipy.arctan2(self.unit[1],self.unit[0])
Пример #48
0
def decode_ee(e1,e2,scale=0.03):
    #from:    e = (a-b)/(a+b)
    #we have: a/b = (1+e)/(1-e)
    #below solution for: a+b=scale*2 (=const)
    e = sqrt(e1**2+e2**2)    
    a = (1+e)*scale
    b = (1-e)*scale
    ang = 0.5*(arctan2(e2,e1))
    return e,a,b,ang
Пример #49
0
 def left2right(self, j1_degree, j2_degree):
     x = self.length1 * math.cos(
         j1_degree * math.pi / 180) + self.length2 * math.cos(
             (j1_degree + j2_degree) * math.pi / 180)
     y = self.length1 * math.sin(
         j1_degree * math.pi / 180) + self.length2 * math.sin(
             (j1_degree + j2_degree) * math.pi / 180)
     theta_yx = scipy.arctan2(y, x) * 180 / scipy.pi
     return (2 * theta_yx - j1_degree), -j2_degree
Пример #50
0
 def decodeMessageSensorUDP(self, msg):
   """ This is used to decode message from sensorUDP application from the android market.
   The orientation field was first used, but its conventions were unclear.
   So now acceleration and magnetic vectors should be used"""
   data = msg.split(', ')
   if data[0]=='G':
       # This is GPS message
       time = decimalstr2float(data[2])
       latitude_deg = decimalstr2float(data[3])
       longitude_deg = decimalstr2float(data[4])
       altitude = decimalstr2float(data[5])
       hdop = decimalstr2float(data[7]) # Horizontal dilution of precision
       vdop = decimalstr2float(data[8]) # Vertical dilution of precision
       print time, latitude_deg, longitude_deg, altitude, hdop, vdop
   if data[0]=='O':
       # \note This is no more used as orientation convention were unclear
       #  'O, 146, 1366575961732, 230,1182404, -075,2031250, 001,7968750'
       [ u, u,    # data not used                                         \    
       heading_deg, # pointing direction of top of phone                    \ 
       roll_deg,    # around horizontal axis, positive clockwise [-180:180] \   
       pitch_deg] = decimalstr2float(data[1:])  # around vertical axis [_90:90]
       elevation_deg = -sp.rad2deg(sp.arctan2(                     \
           sp.cos(sp.deg2rad(pitch_deg))*sp.cos(sp.deg2rad(roll_deg)),     \
           sp.sqrt(1+sp.cos(sp.deg2rad(roll_deg))**2*(sp.sin(sp.deg2rad(pitch_deg))**2-1)))) #positive up
       inclinaison_deg = pitch_deg #positive clockwise
       print heading_deg, roll_deg, pitch_deg, elevation_deg, inclinaison_deg
   if data[0] == 'A':
   # Accelerometer data
   # Index and sign are adjusted to obtain x through the screen, and z down
       deltaT = decimalstr2float(data[2])/1000 - self.time_acceleration
       if self.filterTimeConstant == 0.0:
         alpha = 1
       else:
         alpha = 1-sp.exp(-deltaT/self.filterTimeConstant)
         
       self.time_acceleration = decimalstr2float(data[2])/1000
       self.acceleration_raw[0] = decimalstr2float(data[3])
       self.acceleration_raw[1] = decimalstr2float(data[4])
       self.acceleration_raw[2] = decimalstr2float(data[5])
       # Filter the data
       self.acceleration_filtered +=alpha*(sp.array(self.acceleration_raw)-self.acceleration_filtered)
   if data[0] == 'M':
   # Magnetometer data
   # Index and sign are adjusted to obtain x through the screen, and z down
       deltaT =  decimalstr2float(data[2])/1000-self.time_magnetic
       if self.filterTimeConstant == 0.0:
         alpha = 1
       else:
         alpha = 1-sp.exp(-deltaT/self.filterTimeConstant)
         
       self.time_magnetic = decimalstr2float(data[2])/1000
       self.magnetic_raw[0] = decimalstr2float(data[3])
       self.magnetic_raw[1] = decimalstr2float(data[4])
       self.magnetic_raw[2] = -decimalstr2float(data[5])# Adapt to a bug in sensorUDP?
       # Filter the data
       self.magnetic_filtered += alpha*(sp.array(self.magnetic_raw)-self.magnetic_filtered)
Пример #51
0
def cart2sphere(coordlist):

    X_vec = coordlist[:,0]
    Y_vec = coordlist[:,1]
    Z_vec = coordlist[:,2]
    R_vec = sp.sqrt(X_vec**2+Y_vec**2+Z_vec**2)
    Az_vec = np.degrees(sp.arctan2(X_vec,Y_vec))
    El_vec = np.degrees(sp.arcsin(Z_vec/R_vec))
    sp_coords = sp.array([R_vec,Az_vec,El_vec]).transpose()
    return sp_coords
def b(x, y, params):
    '''
    Returns b as defined by Eq. 4    
        
    '''
    a0 = params['a0']
    x0 = params['x0']
    y0 = params['y0']
    E  = params['E']
    
    return a0 - E + scipy.arctan2((y - y0),(x - x0))
Пример #53
0
def cart2sphere(coordlist):
    r2d = 180.0/sp.pi
    d2r = sp.pi/180.0
    
    X_vec = coordlist[:,0]
    Y_vec = coordlist[:,1]
    Z_vec = coordlist[:,2]
    R_vec = sp.sqrt(X_vec**2+Y_vec**2+Z_vec**2)
    Az_vec = sp.arctan2(X_vec,Y_vec)*r2d
    El_vec = sp.arcsin(Z_vec/R_vec)*r2d
    sp_coords = sp.array([R_vec,Az_vec,El_vec]).transpose()
    return sp_coords
Пример #54
0
    def compute(self):
        if self.has_input("InputMatrix"):
            m = self.get_input("InputMatrix")
            r = m.Reals().matrix
            im = m.Imaginaries().matrix
        else:
            r = self.get_input("RealMatrix").matrix
            im = self.get_input("ImaginaryMatrix").matrix

        out = SparseMatrix()
        out.matrix = sparse.csc_matrix(scipy.arctan2(im.toarray(),r.toarray()))
        self.set_output("Output", out)
Пример #55
0
def windvec(u= scipy.array([]),\
            D=scipy.array([])):
    '''
    Function to calculate the wind vector from time series of wind
    speed and direction.
    
    Parameters:
        - u: array of wind speeds [m s-1].
        - D: array of wind directions [degrees from North].
        
    Returns:
        - uv: Vector wind speed [m s-1].
        - Dv: Vector wind direction [degrees from North].
        
    Examples
    --------
    
        >>> u = scipy.array([[ 3.],[7.5],[2.1]])
        >>> D = scipy.array([[340],[356],[2]])
        >>> windvec(u,D)
        (4.162354202836905, array([ 353.2118882]))
        >>> uv, Dv = windvec(u,D)
        >>> uv
        4.162354202836905
        >>> Dv
        array([ 353.2118882])
        
    '''
    
    # Test input array/value    
    u,D = _arraytest(u,D)

    ve = 0.0 # define east component of wind speed
    vn = 0.0 # define north component of wind speed
    D = D * math.pi / 180.0 # convert wind direction degrees to radians
    for i in range(0, len(u)):
        ve = ve + u[i] * math.sin(D[i]) # calculate sum east speed components
        vn = vn + u[i] * math.cos(D[i]) # calculate sum north speed components
    ve = - ve / len(u) # determine average east speed component
    vn = - vn / len(u) # determine average north speed component
    uv = math.sqrt(ve * ve + vn * vn) # calculate wind speed vector magnitude
    # Calculate wind speed vector direction
    vdir = scipy.arctan2(ve, vn)
    vdir = vdir * 180.0 / math.pi # Convert radians to degrees
    if vdir < 180:
        Dv = vdir + 180.0
    else:
        if vdir > 180.0:
            Dv = vdir - 180
        else:
            Dv = vdir
    return uv, Dv # uv in m/s, Dv in dgerees from North
 def stopRecordingRot(self):
     self.wm.accelerometer.unregister_callback(self.recordAccel)
     for value in self.currentGestureData:
         x, y, z = value[0], value[1], value[2]
         rot_angle = int(-(sp.degrees(sp.arctan2(z-512, x-512)) - 90))
         self.rotList.append(rot_angle)
     print(self.rotList)
     self.currentGestureData = []
     direction = self.getDirection()
     if direction == 1:
         self.callback(2)
     else:
         self.callback(-2)
Пример #57
0
def EqTolb (ra_deg, dec_deg):
    """ Converts equatorial ra, dec, into galactic l,b;  from Binney and Merrifield, p. 31
    following the method of http://star-www.st-and.ac.uk/~spd3/Teaching/AS3013/programs/radec2lb.f90
    NOT QUITE - I use arctan2 method instead"""
    ra, dec = (ra_deg*rad), (dec_deg*rad)
    # Conversion Code
    r = (ra - raGP)
    b = sc.arcsin( sc.sin(decGP)*sc.sin(dec) + sc.cos(decGP)*sc.cos(dec)*sc.cos(r) )
    t = sc.arctan2((sc.cos(dec)*sc.sin(r)),
                   (sc.cos(decGP)*sc.sin(dec) - sc.sin(decGP)*sc.cos(dec)*sc.cos(r)) )
    l = (lCP - t)
    b, l = angle_bounds2((b*deg), (l*deg))
    return l, b
Пример #58
0
def lbToEq (l_deg, b_deg):   
    """ Converts galactic l,b in to Equatorial ra, dec; from Binney and Merrifield, p. 31;  
    l, b must be arrays of same shape"""
    l, b = (l_deg*rad), (b_deg*rad)
    # Conversion Code
    t = lCP - l
    dec = sc.arcsin(sc.sin(decGP)*sc.sin(b) + sc.cos(decGP)*sc.cos(b)*sc.cos(t) )
    r = sc.arctan2( (sc.cos(b)*sc.sin(t)),
                    ( (sc.cos(decGP)*sc.sin(b)) - (sc.sin(decGP)*sc.cos(b)*sc.cos(t)))  )
    if type(r) != type(arr):  r = sc.array([r])
    for i in range(len(r)):
        r[i] = angle_bounds((r[i] + raGP)*deg)
    return r, (dec*deg)