Пример #1
0
 def test_scissors_tanimotos(self):
     """Test default Tanimoto approximation."""
     basis = np.random.randint(self.n_mols, size=200)
     bb_ip = self.data['ab_overlap'][basis][:, basis]
     lb_ip = self.data['ab_overlap'][:, basis]
     s = SCISSORS(bb_ip)
     tanimotos = s.get_tanimotos(lb_ip, max_dim=100)
     assert_scissors(tanimotos, self.data['tanimotos'])
Пример #2
0
 def test_scissors_tanimotos_with_overlaps(self):
     """
     Test Tanimoto approximation using precalculated self-overlap
     values.
     """
     basis = np.random.randint(self.n_mols, size=200)
     bb_ip = self.data['ab_overlap'][basis][:, basis]
     lb_ip = self.data['ab_overlap'][:, basis]
     s = SCISSORS(bb_ip)
     tanimotos = s.get_tanimotos(lb_ip, self_overlap=self.data['a_overlap'],
                                 max_dim=100)
     assert_scissors(tanimotos, self.data['tanimotos'])
Пример #3
0
 def test_parsimonious_scissors_tanimotos(self):
     """
     Test default Tanimoto approximation using parsimonious overlap
     values.
     """
     basis = np.random.randint(self.n_mols, size=200)
     bb_ip = self.data['tanimotos'][basis][:, basis]
     bb_ip = SCISSORS.get_inner_products_from_tanimotos(bb_ip)
     lb_ip = self.data['tanimotos'][:, basis]
     lb_ip = SCISSORS.get_inner_products_from_tanimotos(lb_ip)
     s = SCISSORS(bb_ip)
     tanimotos = s.get_tanimotos(lb_ip, max_dim=100)
     assert_scissors(tanimotos, self.data['tanimotos'])
Пример #4
0
 def test_parsimonious_scissors_tanimotos_with_overlaps(self):
     """
     Test Tanimoto approximation using parsimonious overlap values and
     precalculated self-overlap values.
     """
     basis = np.random.randint(self.n_mols, size=200)
     bb_ip = self.data['tanimotos'][basis][:, basis]
     bb_ip = SCISSORS.get_inner_products_from_tanimotos(bb_ip)
     lb_ip = self.data['tanimotos'][:, basis]
     lb_ip = SCISSORS.get_inner_products_from_tanimotos(lb_ip)
     s = SCISSORS(bb_ip)
     tanimotos = s.get_tanimotos(lb_ip, self_overlap=np.ones(lb_ip.shape[0],
                                                             dtype=float),
                                 max_dim=100)
     assert_scissors(tanimotos, self.data['tanimotos'])
Пример #5
0
def load(filename, overlap):
    """
    Load ROCS data from HDF5.

    Parameters
    ----------
    filename : str
        File containing ROCS overlay results.
    overlap : bool
        Whether to use actual pairwise overlaps as inner products. If
        False, use overlaps calculated under the parsimonious assumption
        of unity molecular self-overlap values.
    """
    with h5py.File(filename) as f:
        if overlap:
            shape_ip = f['shape_overlap'][:]
            color_ip = f['color_overlap'][:]
        else:
            shape_ip = SCISSORS.get_inner_products_from_tanimotos(
                f['shape_tanimoto'][:])
            color_ip = SCISSORS.get_inner_products_from_tanimotos(
                f['color_tanimoto'][:])
    return shape_ip, color_ip
Пример #6
0
def main():

    # load input data
    shape_bb_ip, color_bb_ip = load(args.bb, args.overlap)
    shape_lb_ip, color_lb_ip = load(args.lb, args.overlap)
    if args.transpose:
        shape_lb_ip = shape_lb_ip.T
        color_lb_ip = color_lb_ip.T

    # setup dimensionality
    shape_dim = None
    color_dim = None
    if args.dim:
        shape_dim = args.dim
        color_dim = args.dim
    if args.shape_dim:
        shape_dim = args.shape_dim
    if args.color_dim:
        color_dim = args.color_dim

    # generate SCISSORS vectors
    shape_s = SCISSORS(shape_bb_ip)
    shape_vectors = shape_s.get_vectors(shape_lb_ip, shape_dim)
    color_s = SCISSORS(color_bb_ip)
    color_vectors = color_s.get_vectors(color_lb_ip, color_dim)

    data = {'shape_vectors': shape_vectors,
            'shape_projection_matrix': shape_s.get_projection_matrix(),
            'shape_eigenvalues': shape_s.get_eigenvalues(),
            'color_vectors': color_vectors,
            'color_eigenvalues': color_s.get_eigenvalues(),
            'color_projection_matrix': color_s.get_projection_matrix()}
    if args.y:
        with open(args.y) as f:
            y = cPickle.load(f)
        data['y'] = y
    save(data, args.output, attrs=vars(args))