def discover_channel_psd_difference(): highscore_epoch, lowscore_epoch = None, None highscorenum, lowscorenum = 0, 0 for i in range(1, 60): try: data_score = get_score(i)[0] data_state = get_state(i, 3) data_eeg = get_epoch_eeg(i).drop(["condition"], axis=1) data_raw_eeg = get_raw_eeg(i) if not (len(data_score) == len(data_eeg["epoch"].value_counts()) and len(data_score) == len( data_state[data_state["markerText"] == "ShotOps"])): continue print("yes") events, event_id = mne.events_from_annotations(data_raw_eeg) epochs = mne.Epochs(data_raw_eeg, events, event_id, tmin=-3, tmax=0, event_repeated='drop', preload=True) first, second = get_score(i + 1) rest_eeg = epochs["s1001"][0] total_shot_num = len(first) + len(second) first_shoot_eeg = epochs["s1002"][-total_shot_num:-len(second)] for j in range(len(data_score)): if data_score[j] > 9: if highscore_epoch == None: highscore_epoch = first_shoot_eeg["s1002"][j] else: highscore_epoch = mne.concatenate_epochs( [highscore_epoch, first_shoot_eeg["s1002"][j]]) highscorenum += 1 if data_score[j] < 8: if lowscore_epoch == None: lowscore_epoch = first_shoot_eeg["s1002"][j] else: lowscore_epoch = mne.concatenate_epochs( [lowscore_epoch, first_shoot_eeg["s1002"][j]]) lowscorenum += 1 print(highscorenum) print(lowscorenum) except Exception as e: traceback.print_exc() channelnames = ["Fz", "F3", "F4", "P3", "Pz", "P4", "O1", "O2", "POz"] print("test") for channelname in channelnames: plot_channel_psd(highscore_epoch, channelname) for channelname in channelnames: plot_channel_psd(lowscore_epoch, channelname)
def home(): db.drop_all() db.create_all() if request.method == 'POST': # Get the resume and save it into to database. if 'resume' not in request.form: flash('No input yet') return redirect(request.url) else: resume = request.form['resume'] resume = User(resume=resume) db.session.add(resume) db.session.commit() # Get the job post and save it into database. if 'job_description' not in request.form: flash('No input yet') return redirect(request.url) else: # Save the submited plain text data into database job_post = request.form['job_description'] job_post = Job(job_post=job_post) db.session.add(job_post) db.session.commit() # Query the database and get the matching score. user = User.query.first() job = Job.query.first() resume = user.resume job_post = job.job_post matching_score = score.get_score(skills=skills, job_post=job_post, resume=resume) return render_template('home.html', matching_score=matching_score) else: return render_template('home.html')
def calculate_score(pose): position, orientation = split_pose_array(pose) image_pose = ImagePose(position=position, orientation=orientation) debug = False dist = np.linalg.norm(np.array([150.0, -6.0]) - position[0:2]) #if dist < 2: #debug = True predicted_detections = prediction.predicted_detections(image_pose, landmark_list, camera, debug=debug) _, _, yaw = tf.euler.quat2euler(orientation, axes='sxyz') if debug: print(np.rad2deg(yaw)) debug_image = np.zeros((camera.height, camera.width, 3)) debug_image = detection.generate_debug_image(debug_image, predicted_detections) plt.imshow(util.bgr_to_rgb(debug_image)/255) plt.show() # If there are no detections predicted use the cached score for that case if len(predicted_detections) == 0: score_val = empty_predicted_score else: score_val = score.get_score(predicted_detections, query_detections, sign_types, debug=debug) global score_calc_count score_calc_count += 1 progress = 100 * score_calc_count / total_poses print('{:.2f}% '.format(progress), end='\r') return score_val
def add_to_result(senten, fix_word, result, detraction, string): senten = data_dict[fix_word][:(5 - len(senten))] result += [ AutoCompleteData(sentences[index.id].sentence, sentences[index.id].path, index.offset, get_score(string, detraction)) for index in senten ]
def calculate_gaussian_score(pose, landmark_list, query_detections, camera, sign_types): position, orientation = split_pose_array(pose) image_pose = ImagePose(position=position, orientation=orientation) debug = False dist = np.linalg.norm(np.array([150.0, -6.0]) - position[0:2]) #if dist < 2: #debug = True predicted_detections = prediction.predicted_detections(image_pose, landmark_list, camera, debug=debug) _, _, yaw = tf.euler.quat2euler(orientation, axes='sxyz') # If there are no detections predicted use the cached score for that case if len(predicted_detections) == 0: score_val = empty_predicted_score else: score_val = get_score(predicted_detections, query_detections, sign_types, debug=debug) return score_val
def get_data(): datax = [] datay = [] for i in tqdm(range(1, 60)): try: data_score = get_score(i)[0] data_state = get_state(i, 5) data_eeg = get_epoch_eeg(i).drop(["condition"], axis=1) if not (len(data_score) == len(data_eeg["epoch"].value_counts()) and len(data_score) == len( data_state[data_state["markerText"] == "ShotOps"])): continue print("yes") for shoot in range(len(data_score)): datax.append( get_aeraeeg_psd(data_eeg[data_eeg["epoch"] == i][-1000:])) datay.extend(data_score) """ data=get_raw_eeg(i) events,event_id=mne.events_from_annotations(data) epochs=mne.Epochs(data,events,event_id,tmin=-5,tmax=0,event_repeated='drop',preload=True) first,second=get_score(i+1) rest_eeg=epochs["s1001"][0] total_shot_num=len(first)+len(second) first_shoot_eeg=epochs["s1002"][-total_shot_num:-len(second)] first_shoot_eeg["s1002"][0].plot_psd(fmin=2., fmax=40., average=True, spatial_colors=False,picks=["Fz"]) plt.show() """ except Exception as e: traceback.print_exc() pass return datax, datay
def main(filepath): try: os.remove("result.html") except FileNotFoundError: pass java, submitter, url, snarf, web_browser = getInfo() targets = getTargets(java, submitter, url).split('\n') for i, target in enumerate(targets): print(f"{i}\t{target}") submission_target = targets[int(input("Which number? "))] html = submit( java, submitter, url, submission_target, getUsername(), getPassword(), filepath ) # with open("result.html", "w+") as fout: # fout.write(html) # viewInBrowser("result.html") html = html[html.find("url="):] url = html[4:html.find('"')] print(repr(url)) try: call(f"echo {url} " "| /mnt/c/Windows/System32/WindowsPowerShell/v1.0//powershell.exe " "-c clip", shell=True) # powershell.exe -c "& \"C:\\Program Files\\Mozilla Firefox\\firefox.exe\" $url" call([ "/mnt/c/Windows/System32/WindowsPowerShell/v1.0//powershell.exe", '-c', "& \"C:\\Program Files\\Mozilla Firefox\\firefox.exe\"", url ]) except: pass try: try: correctness, final = get_score(url) except: correctness, final = get_score(url) print("Correctness/Testing:", correctness) print("Final score:", final) except: pass
def get_pose_scores(landmark_list, query_detections, possible_camera_poses, camera, sign_types): """ Attach scores to each possible pose from `get_possible_poses` :param landmark_list: List of landmarks detected in the map :param query_detections: List of instances of TrafficSignDetection :param possible_camera_poses: Possible poses and orientation of the camera :param camera: Camera parameters :param sign_types: List of landmark types :returns: Array where scores are attached to possible poses """ # Filter only landmarks of given sign types landmark_list = list(filter(lambda l: l.sign_type in sign_types, landmark_list)) empty_predicted_score = score.get_score([], query_detections, sign_types, debug=False) total_poses = possible_camera_poses.size / 7 global score_calc_count score_calc_count = 0 def calculate_score(pose): position, orientation = split_pose_array(pose) image_pose = ImagePose(position=position, orientation=orientation) debug = False dist = np.linalg.norm(np.array([150.0, -6.0]) - position[0:2]) #if dist < 2: #debug = True predicted_detections = prediction.predicted_detections(image_pose, landmark_list, camera, debug=debug) _, _, yaw = tf.euler.quat2euler(orientation, axes='sxyz') if debug: print(np.rad2deg(yaw)) debug_image = np.zeros((camera.height, camera.width, 3)) debug_image = detection.generate_debug_image(debug_image, predicted_detections) plt.imshow(util.bgr_to_rgb(debug_image)/255) plt.show() # If there are no detections predicted use the cached score for that case if len(predicted_detections) == 0: score_val = empty_predicted_score else: score_val = score.get_score(predicted_detections, query_detections, sign_types, debug=debug) global score_calc_count score_calc_count += 1 progress = 100 * score_calc_count / total_poses print('{:.2f}% '.format(progress), end='\r') return score_val scores = np.apply_along_axis(calculate_score, 3, possible_camera_poses) print('Done ') return scores
def get_data(): datax = [] datay = [] high, low = 0, 0 for i in tqdm(range(1, 60)): if i == 32: continue try: data_score = get_score(i)[0] data_state = get_state(i, 3) data_eeg = get_epoch_eeg(i).drop(["condition"], axis=1) if not (len(data_score) == len(data_eeg["epoch"].value_counts()) and len(data_score) == len( data_state[data_state["markerText"] == "ShotOps"])): continue print("yes") for j in range(len(data_score)): if data_score[j] > 9.5: datay.append(0) c6 = get_aeraeeg_corr( data_eeg[data_eeg["epoch"] == j][-3000:-2500]) c5 = get_aeraeeg_corr( data_eeg[data_eeg["epoch"] == j][-2500:-2000]) c4 = get_aeraeeg_corr( data_eeg[data_eeg["epoch"] == j][-2000:-1500]) c3 = get_aeraeeg_corr( data_eeg[data_eeg["epoch"] == j][-1500:-1000]) c2 = get_aeraeeg_corr( data_eeg[data_eeg["epoch"] == j][-1000:-500]) c1 = get_aeraeeg_corr( data_eeg[data_eeg["epoch"] == j][-500:]) datax.append([c6, c5, c4, c3, c2, c1]) high += 1 if data_score[j] < 7.5: datay.append(1) c6 = get_aeraeeg_corr( data_eeg[data_eeg["epoch"] == j][-3000:-2500]) c5 = get_aeraeeg_corr( data_eeg[data_eeg["epoch"] == j][-2500:-2000]) c4 = get_aeraeeg_corr( data_eeg[data_eeg["epoch"] == j][-2000:-1500]) c3 = get_aeraeeg_corr( data_eeg[data_eeg["epoch"] == j][-1500:-1000]) c2 = get_aeraeeg_corr( data_eeg[data_eeg["epoch"] == j][-1000:-500]) c1 = get_aeraeeg_corr( data_eeg[data_eeg["epoch"] == j][-500:]) datax.append([c6, c5, c4, c3, c2, c1]) low += 1 print(len(datay), len(datax)) #if len(datay)!=len(datax): # raise Exception("length not matched") except Exception as e: traceback.print_exc() pass print(low, high) return datax, datay
def get_data(): datax = [] datay = [] high, low = 0, 0 for i in tqdm(range(1, 60)): if i == 32: continue try: data_score = get_score(i)[0] data_state = get_state(i, 3) data_eeg = get_epoch_eeg(i).drop(["condition"], axis=1) data_aimtrack = get_aimtrack(i) data_aimtrack.drop( data_aimtrack[data_aimtrack["exp_num"] == 2].index, inplace=True) data_aimtrack.drop(["exp_num"], axis=1, inplace=True) """ extract aimtrack data """ if not (len(data_score) == len(data_eeg["epoch"].value_counts()) and len(data_score) == len( data_state[data_state["markerText"] == "ShotOps"]) and len(data_score) == len( data_aimtrack["shoot_num"].value_counts())): continue print("yes") for j in range(len(data_score)): if data_score[j] > 9.5: curaimtrackx = data_aimtrack[data_aimtrack["shoot_num"] == j + 1]["x"][-40:].tolist() curaimtracky = data_aimtrack[data_aimtrack["shoot_num"] == j + 1]["y"][-40:].tolist() if len(curaimtrackx) != 40 or len(curaimtracky) != 40: continue datax.append([curaimtrackx, curaimtracky]) datay.append(0) print(data_score[j]) high += 1 if data_score[j] < 7.5: curaimtrackx = data_aimtrack[data_aimtrack["shoot_num"] == j + 1]["x"][-40:].tolist() curaimtracky = data_aimtrack[data_aimtrack["shoot_num"] == j + 1]["y"][-40:].tolist() if len(curaimtrackx) != 40 or len(curaimtracky) != 40: continue datax.append([curaimtrackx, curaimtracky]) datay.append(1) low += 1 print(len(datay), len(datax)) #if len(datay)!=len(datax): # raise Exception("length not matched") except Exception as e: traceback.print_exc() pass print(low, high) return datax, datay
def test_get_score_start_with_0_0(self): # Given expected_score: Score = Scores.score_0_0 # When score: Score = get_score(score=Scores.score_0_0) # Then self.assertEqual(expected_score, score)
def test_get_score_when_player_1_score_once(self): # Given expected_score: Score = Scores.score_15_0 scoring_player: int = Players.player_1 # When score: Score = get_score(Scores.score_0_0, scoring_player) # Then self.assertEqual(expected_score, score)
def preprocess(): global files, path_eeg_save_h5 if not os.path.exists(path_eeg_save_h5): os.makedirs(path_eeg_save_h5) count = 0 for i, f in enumerate(files): try: print(i) print("Reading eeg from {}".format(f)) data = mne.io.read_raw_fif(f) data = data.set_montage("standard_1020") events, event_id = mne.events_from_annotations(data) epochs = mne.Epochs(data, events, event_id, tmin=-10, tmax=0, event_repeated='drop', preload=True) first, second = get_score(i + 1) rest_eeg = epochs["s1001"][0] total_shot_num = len(first) + len(second) first_shoot_eeg = epochs["s1002"][-total_shot_num:-len(second)] second_shoot_eeg = epochs["s1002"][-len(second):] fc = 0 sc = 0 for j in range(len(epochs) - 1, 1, -1): if epochs.events[j][2] == 4: sc += 1 else: if sc > 0: break for k in range(j, 1, -1): if epochs.events[k][2] == 6: continue else: break for j in range(k, 1, -1): if epochs.events[j][2] == 4: fc += 1 else: if fc > 0: break print(len(first_shoot_eeg)) print(fc) first_pd = first_shoot_eeg.to_data_frame() second_pd = second_shoot_eeg.to_data_frame() cur_path = os.path.join(path_eeg_save_h5, re.findall(r".*\\(.*?)\.[a-z]", f)[0]) epoch_min = min(first_pd["epoch"]) first_pd["epoch"] = first_pd["epoch"].apply( lambda x: x - epoch_min) first_pd.to_hdf(cur_path + ".h5", key="shoot_eeg") except Exception as e: traceback.print_exc() pass
def test_get_score_when_player_2_lead_by_0_15_player_1_scores(self): # Given expected_score: Score = Scores.score_15_15 scoring_player: int = Players.player_1 current_score: Score = Scores.score_0_15 # When score: Score = get_score(current_score, scoring_player) # Then self.assertEqual(expected_score, score)
def test_get_score_when_player_2_score_then_score_is_0_15(self): # Given expected_score: Score = Scores.score_0_30 scoring_player: int = Players.player_2 current_score: Score = Scores.score_0_15 # When score: Score = get_score(current_score, scoring_player) # Then self.assertEqual(expected_score, score)
def get_data(): datax=[] datay=[] high,low=0,0 for i in tqdm(range(1,60)): if i==32: continue try: data_score=get_score(i)[0] data_state=get_state(i,3) data_eeg=get_epoch_eeg(i).drop(["condition"],axis=1) if not (len(data_score)==len(data_eeg["epoch"].value_counts()) and len(data_score)==len(data_state[data_state["markerText"]=="ShotOps"])): continue print("yes") for j in range(len(data_score)): if data_score[j]>9.5: datay.append(0) high+=1 d6=get_aeraeeg_psd(data_eeg[data_eeg["epoch"]==j][-3000:-2500]) d5=get_aeraeeg_psd(data_eeg[data_eeg["epoch"]==j][-2500:-2000]) d4=get_aeraeeg_psd(data_eeg[data_eeg["epoch"]==j][-2000:-1500]) d3=get_aeraeeg_psd(data_eeg[data_eeg["epoch"]==j][-1500:-1000]) d2=get_aeraeeg_psd(data_eeg[data_eeg["epoch"]==j][-1000:-500]) d1=get_aeraeeg_psd(data_eeg[data_eeg["epoch"]==j][-500:]) datax.append([d6,d5,d4,d3,d2,d1]) if data_score[j]<7.5: datay.append(1) low+=1 d6=get_aeraeeg_psd(data_eeg[data_eeg["epoch"]==j][-3000:-2500]) d5=get_aeraeeg_psd(data_eeg[data_eeg["epoch"]==j][-2500:-2000]) d4=get_aeraeeg_psd(data_eeg[data_eeg["epoch"]==j][-2000:-1500]) d3=get_aeraeeg_psd(data_eeg[data_eeg["epoch"]==j][-1500:-1000]) d2=get_aeraeeg_psd(data_eeg[data_eeg["epoch"]==j][-1000:-500]) d1=get_aeraeeg_psd(data_eeg[data_eeg["epoch"]==j][-500:]) datax.append([d6,d5,d4,d3,d2,d1]) print(len(datay),len(datax)) #if len(datay)!=len(datax): # raise Exception("length not matched") """ data=get_raw_eeg(i) events,event_id=mne.events_from_annotations(data) epochs=mne.Epochs(data,events,event_id,tmin=-5,tmax=0,event_repeated='drop',preload=True) first,second=get_score(i+1) rest_eeg=epochs["s1001"][0] total_shot_num=len(first)+len(second) first_shoot_eeg=epochs["s1002"][-total_shot_num:-len(second)] first_shoot_eeg["s1002"][0].plot_psd(fmin=2., fmax=40., average=True, spatial_colors=False,picks=["Fz"]) plt.show() """ except Exception as e: traceback.print_exc() pass print(low,high) return datax,datay
def test_get_score_when_player_1_score_then_score_is_updated(self): # Given expected_score: Score = Scores.score_30_0 scoring_player: int = Players.player_1 current_score: Score = Scores.score_15_0 # When score: Score = get_score(current_score, scoring_player) # Then self.assertEqual(expected_score, score)
def test_get_score_when_player_2_score_once(self): # Given expected_score: Score = Scores.score_0_15 scoring_player: int = Players.player_2 current_score: Score = Scores.score_0_0 # When score: Score = get_score(score=current_score, scoring_player=scoring_player) # Then self.assertEqual(expected_score, score)
def upload(): if request.method == 'POST': file = request.files['file'] if file: filename = str(uuid.uuid4()) + secure_filename(file.filename) output_file = os.path.join(app.config['UPLOAD_FOLDER'], filename) file.save(output_file) res = score.get_score(output_file) with open('current_score.yaml', 'w') as f: f.write( yaml.dump(res, default_flow_style=True) ) return str(res) return '''
def upload(): if request.method == 'POST': file = request.files['file'] if file: filename = str(uuid.uuid4()) + secure_filename(file.filename) output_file = os.path.join(app.config['UPLOAD_FOLDER'], filename) file.save(output_file) res = score.get_score(output_file) with open('current_score.yaml', 'w') as f: f.write(yaml.dump(res, default_flow_style=True)) return str(res) return '''
def main(args): prediction = args.prediction train = args.train if prediction: test_path = args.data_dir test_file = args.test_file context = args.Context res_dir = args.res_dir test_SNPs = pd.read_csv(test_path + '/' + test_file, sep='\t') test_SNPs = test_SNPs[['Chromosome','Start','End']] data = score.get_score(test_SNPs) ''' kde get transformed score ''' trans_score = transform.transform(data, context) ''' load WEVar model, and predict WEVar score ''' res = model.WEVar(trans_score, context) test_SNPs['WEVar_{}'.format(context)] = res test_SNPs.to_csv('{}/{}'.format(res_dir,test_file), index=False, sep='\t') elif train: data_path = args.data_dir train_file = args.train_file train_SNPs = pd.read_csv(data_path + '/' + train_file, sep='\t') X = train_SNPs[['Chromosome', 'Start', 'End']] X = score.get_score(X) Y = train_SNPs['Labels'].to_numpy() train_model.train(X,Y, train_file) train_model.test(X,Y, train_file)
def draw_score_distribution(): score = [] for i in range(1, 60): try: score.extend(get_score(i)[0]) except Exception as e: pass print(score) plt.hist(score, width=0.8, color="orange") plt.title("shot score distribution") plt.xlabel("shot score") plt.ylabel("num") plt.show()
def two_player_min_max(self, player, depth): self.update_event() score = get_score(self.game_board, player, self.players, self.goal) if score == 10000 or score == -10000 or score == 0 or depth == 0: return score best_score = -100000 for move in self.get_possible_moves(): self.game_board[move[1]][move[0]].value = player.color score = -self.two_player_min_max(self.change_turn(player), depth - 1) self.game_board[move[1]][move[0]].value = None best_score = max(score, best_score) return best_score
def get_score(bot, context): global ID global URL global want global last_ball msg=None print("-----") print(last_ball, msg) print("----") last_ball, msg=score.get_score(URL, ID, last_ball) print("called") if msg: global user_id for u in user_id: bot.send_message(u, msg)
def send_job(): if request.method == 'POST': if 'job_post' not in request.form: flash('No input yet') return redirect(request.url) job_post = request.form['job_post'] job_post = Job(job_post=job_post) db.session.add(job_post) db.session.commit() user = User.query.first() resume = user.resume matching_score = score.get_score(skills=skills, job_post=job_post, resume=resume) return render_template('score.html', matching_score=matching_score) else: return render_template('send_job.html')
def get_score(self, pred, y, from_paths=False, tgt_size=None, post_processing=False, method=None): '''Reimplement this function and return the score''' # for i in range(len(pred)): # pred[i] = pred[i] / pred[i].max() if from_paths: y = utils.load_masks(y, tgt_size=tgt_size, method=method) if not post_processing: pred = utils.trsf_proba_to_binary(pred) s = score.get_score(y, pred, label_pred=(self.multi_head and post_processing)) return s
def evaluate(model, data, logdir, epoch, out_f, gpu): get_embedding(model, data, logdir, gpu, test=False) img_embeddings, img_fns, gel_embeddings, gel_fns = get_embedding(model, data, logdir, gpu, test=True) precision = get_score(img_embeddings, img_fns, gel_embeddings, gel_fns) return precision nb_img = len(img_embeddings) nb_gel = len(gel_embeddings) distance_matrix = np.zeros((nb_gel, nb_img)) img_embeddings = np.array(img_embeddings) gel_embeddings = np.array(gel_embeddings) dim_embedding = img_embeddings.shape[-1] img_embeddings = img_embeddings.reshape((nb_img, dim_embedding)) gel_embeddings = gel_embeddings.reshape((nb_gel, dim_embedding)) scores = [] for i in range(nb_gel): distance_matrix[i, :] = np.mean(np.square(img_embeddings - gel_embeddings[i, :]), axis=1).T r = [] for j in range(nb_img): if (get_gel_id(img_fns[j]) == get_gel_id(gel_fns[i])): r.append(1) else: r.append(0) d = distance_matrix[i, :].tolist() a = zip(d, r) a = sorted(a, key=lambda d: d[0]) r = [x[1] for x in a] ndcg = [rank_metrics.ndcg_at_k(r, k) for k in [10, 20, 30]] precision = [rank_metrics.precision_at_k(r, k) for k in [10, 20, 30]] scores.append(ndcg + precision) scores = np.array(scores) scores = np.mean(scores, axis=0) print "ndcg & precision", scores print >> out_f, "ndcg & precision", scores
def home(): if request.method == 'POST': # Get the resume from user's input form if 'resume' not in request.form: return redirect(request.url) else: resume = request.form['resume'] # Get the job post from user's input form if 'job_description' not in request.form: return redirect(request.url) else: job_post = request.form['job_description'] matching_score = score.get_score(job_post=job_post, resume=resume) matching_score = matching_score*100 matching_score= "{:.0f}".format(matching_score) classified_title = classify(job_post, preprocessor= tfidfVectorizer, model=classifier) return render_template('home.html',matching_score=matching_score, classified_title=classified_title) else: return render_template('home.html')
def run_eval(): ''' 0.647781443332231 0.751431565552603 0.6957674364205794 1.453401803970337 0.7561888945873121 0.8691474231820053 0.8087429315200878 105.16041398048401 0.756098554597748 0.8682866125229237 0.8083184530290493 121.29132223129272 0.7572781508769642 0.8693719824843744 0.8094628264770966 226.5253984928131 0.760764030300562 0.8739005950821512 0.8134171725177012 3.427755832672119 0.742910027361983 0.8637486432875482 0.7987851308320643 0.9492778778076172 ''' testfile = './data/test.txt' P, R, F, cost = get_score(testfile, 'hmm') P, R, F, cost = get_score(testfile, 'forward') P, R, F, cost = get_score(testfile, 'backward') P, R, F, cost = get_score(testfile, 'biward') P, R, F, cost = get_score(testfile, 'maxngram') P, R, F, cost = get_score(testfile, 'biwardngram')
def find_sequence(string): detraction = 0 senten = data_dict[string][:5] result = [ AutoCompleteData(sentences[index.id].sentence, sentences[index.id].path, index.offset, get_score(string, detraction)) for index in senten ] if len(result) < 5: if len(string) > 1: fix_word, detraction = replace_char(string, 1, len(string)) add_to_result(senten, fix_word, result, detraction, string) if len(result) < 5: if len(string) > 3: fix_word, detraction = delete_unnecessary_char(string, 3, 4) add_to_result(senten, fix_word, result, detraction, string) if len(result) < 5: if len(string) > 3: fix_word, detraction = add_missed_char(string, 3, 4) add_to_result(senten, fix_word, result, detraction, string) if len(result) < 5: if len(string) > 0: fix_word, detraction = replace_char(string, 0, 1) add_to_result(senten, fix_word, result, detraction, string) if len(result) < 5: fix_word, detraction = delete_unnecessary_char(string, 0, len(string)) add_to_result(senten, fix_word, result, detraction, string) if len(result) < 5: fix_word, detraction = add_missed_char(string, 0, len(string)) add_to_result(senten, fix_word, result, detraction, string) return result[:5]
def send_job(): if request.method == 'POST': # check if the post request has the file part if 'job_post' not in request.form: flash('No input yet') return redirect(request.url) job_post = request.form['job_post'] #job_post = Job(name=file.filename, resume=file.read()) #db.session.add(resume) #db.session.commit() user = User.query.first() resume = user.resume #return resume matching_score = score.get_score(skills=skills, job_post=job_post, resume=resume) #flash("score was calculated") return render_template('score.html', matching_score=matching_score) #return 'Saved ' + file.filename + ' to the database!' ### return top 10 jobs you need to consider today. return render_template('send_job.html')
output =[] finalscore = 0 counter = 0 flad = [0.8]*700 + [0.2]*2800 for train, test in skf: counter = counter + 1 clf = AdaBoostClassifier(n_estimators = 1500, learning_rate = 0.1) clf = clf.fit([ newdata[i][:] for i in train ], [ data[i][-1] for i in train ],np.array([flad[i] for i in train ]) ) prediction = clf.predict([ newdata[i][:] for i in test ]) # pred = [] # for i in prediction: # if(i > 1.5): # pred.append(2) # else: # pred.append(1) xscore = score.get_score( prediction , [ data[i][-1] for i in test ]) finalscore = finalscore + xscore print xscore print "done" finalscore = finalscore * (1.0) / counter print counter print finalscore # score = cross_val_score(clf, newdata[:,:], data[:,-1], cv = 5, scoring = 'get_score') # print "in scores" # for i in score: # print i # print "out of score" # for i in output: # print i
testL.append(i) testL.append(i) testL.append(i) labels3.append(1) labels3.append(1) labels3.append(1) prj = PCA(n_components = 10) newdata = prj.fit_transform([normdata[i][:] for i in trainL ], labels2)#[ labels[i] for i in trainL ]) newtestdata = prj.transform([normdata[i][:] for i in testL ]) print np.shape(newdata) clf = RandomForestClassifier(n_estimators = 500) clf = clf.fit(newdata, labels2) prediction = clf.predict(newtestdata) # pred = [] # for i in prediction: # if(i > 1.5): # pred.append(2) # else: # pred.append(1) print score.get_score(prediction, labels3) #[ labels[i] for i in test ]) print "done" # score = cross_val_score(clf, newdata[:,:], data[:,-1], cv = 5, scoring = 'get_score') # print "in scores" # for i in score: # print i # print "out of score" # for i in output: # print i
def build_summary(starting_summary, parent_keywords=[]): partial_summary = ( list(starting_summary), # summary until this point 0, # score until this point list(starting_summary) # starting summary ) partial_summaries = [] heappush(partial_summaries, (-partial_summary[1], partial_summary)) completed_summaries = [] while partial_summaries: # generate potential summaries # expand them and keep the best ones _, (summary, summary_score, keywords) = heappop(partial_summaries) # add words to summary add_forward = g.ng.get((summary[-2], summary[-1]), {}).keys() add_reverse = g.ing.get((summary[0], summary[1]), {}).keys() # compute score for possible next moves # also updates ng previous_bigram = tuple(summary[-2:]) next_options = [ ( summary + list(bigr)[1:], get_score( summary, bigr, get_and_update(3, None, previous_bigram + (bigr[1],), g.ts), previous_bigram, 1, list(keywords) + list(parent_keywords) ), bigr[1] ) for bigr in add_forward ] # repeat for reverse links (not elegant, refactor?) previous_bigram = tuple(summary[:2]) next_options += [ ( list(bigr)[:1] + summary, get_score( summary, bigr, get_and_update(3, None, (bigr[0],) + previous_bigram, g.ts), previous_bigram, 2, list(keywords) + list(parent_keywords) ), bigr[0] ) for bigr in add_reverse ] next_options = nlargest(5, next_options, key=lambda x: x[1]) for next in next_options: summary, score = ( next[0], summary_score + next[1] ) if summary[-1] == '_E' and summary[0] == '_S' and len(summary) > 8: # this summary looks good, we keep it # update penalties for w in summary: g.penalty[w] += 1 print score return summary elif (summary[-1] == '_E' and summary[0] == '_S'): # this summary is too short, discard it for w in summary: g.penalty[w] += 1 else: partial_summaries.append((-score, (summary, score, keywords))) # no summary could be built return None
def get_score(username, passwd): import score return score.get_score(username, passwd)
def game(score_state): # No sound. :( #pygame.mixer.pre_init(44100,8,4,1024) pygame.init() pygame.font.init() #pygame.mixer.music.set_volume(2.0) # if pygame.mixer.music.get_busy(): # pass # else: # musicfile = data.filepath('midi','bumblbee.mid') # pygame.mixer.music.load(musicfile) # pygame.mixer.music.play(-1) screen = pygame.display.set_mode(SCREENRECT.size) clock = pygame.time.Clock() background = pygame.image.load(data.filepath('images/new_background.png')).convert() level = Level() tornadoes = pygame.sprite.Group() houses = pygame.sprite.Group() player = pygame.sprite.Group() rays = pygame.sprite.Group() lightnings = pygame.sprite.Group() all = pygame.sprite.OrderedUpdates() titles = pygame.sprite.Group() statuses = pygame.sprite.Group() scores = pygame.sprite.Group() sparks = pygame.sprite.Group() start_new_game = False Score.containers = all Status.containers = all Title.containers = all Tornado.containers = tornadoes,all House.containers = houses,all Ray.containers = rays,all Lightning.containers = lightnings,all Score.containers = all Spark.containers = all Status.containers = all Player.containers = all screen.blit(background,(0,0)) pygame.display.flip() # Title Screen score = Score(score_state) status_pause = 0 first_time = True while start_new_game == False: status_pause = status_pause + 1 if (first_time): title_text = "Twisted Twister!" Title(title_text,(0,0,0)) Title(title_text,(255,0,0)) Title(title_text,(0,255,255)) Title(title_text,(0,255,0)) Title(title_text,(0,0,255)) first_time = False for event in pygame.event.get(): if event.type == QUIT: sys.exit() if event.type == MOUSEBUTTONDOWN: start_new_game = True if event.type == KEYDOWN: if event.key == K_ESCAPE: sys.exit() else: start_new_game = True if status_pause > 100: Status ("Press any key to start...") status_pause = 0 all.clear(screen,background) all.update() dirty = all.draw(screen) pygame.display.update(dirty) clock.tick(30) kill_objects(all) house_container = [] # Stuff to do to start the game #for i in range(100,800,150): for i in range(0,5): house_container.append(House(((i*150)+100,500))) # Reset the level level.start() # Start the scoreboard score = Score(score_state) # Populate the screen with the actors fujita = start_game(level) player = Player((400,550)) # Lights! Camera! Silence on the set! playing = True bonus_house = 0 last_bonus = 0 bonus_at = 10000 # Cameras rolling... # 3...2...1... Action! while playing: active = True lightning_counter = 0 Status("Level %d, %s spotted!" % (level.get_level(), 'F' + str(fujita) + 's')) if (bonus_house > 0): for t in range(0,5): if (house_container[t].is_alive() == False): if (bonus_house >= 1): house_container[t].set_alive() bonus_house = bonus_house - 1 while active: lightning_counter = lightning_counter + 1 if lightning_counter > min(300,10000 - (level.get_level() * 200)): Lightning(player.get_position()) lightning_counter = 0 for event in pygame.event.get(): if event.type == QUIT: sys.exit() if event.type == KEYDOWN: # Put in an escape key / Q key handler if event.key == K_ESCAPE: active = False playing = False if event.key == K_LEFT: player.left() if event.key == K_RIGHT: player.right() if event.key == K_LCTRL or event.key == K_RCTRL: player.fire() if event.type == KEYUP: if event.key == K_LEFT: player.stop() if event.key == K_RIGHT: player.stop() pass tornado_house_collide = pygame.sprite.groupcollide(houses,tornadoes,False,False) if (tornado_house_collide): for house in (tornado_house_collide): for tornado in (tornado_house_collide[house]): if (house.is_alive()): tornado.rise() house.rise(tornado.get_fujita()) tornado_ray_collide = pygame.sprite.groupcollide(tornadoes,rays,False,False) if (tornado_ray_collide): for tornado in (tornado_ray_collide): tornado.hit(score) if (not tornadoes.sprites()): active = False lightning_player_collide = pygame.sprite.spritecollide(player,lightnings,False) if (lightning_player_collide): player.hit() Spark(player.get_midtop_position()) if (score.get_score() >= (last_bonus + bonus_at)): bonus_house = bonus_house + 1 # Should return the last score at 10,000 increments last_bonus = (score.get_score() / 1000) * 1000 Status("Bonus!") all.clear(screen,background) all.update() dirty = all.draw(screen) pygame.display.update(dirty) clock.tick(30) # Reset for the next level if playing: level.next_level() player.kill() fujita = start_game(level) player = Player((400,550)) lightning_counter = 0 houses_alive = False for i in range(0,5): house_container[i].restoration() houses_alive = houses_alive or house_container[i].is_alive() if (houses_alive or bonus_house > 0): playing = True active = True else: active = False playing = False score_state = score.get_score_state() kill_objects(all) return (score_state)
skf = StratifiedKFold(data[:,-1], n_folds=10, shuffle=True) finalscore = 0 counter = 0 output =[] for train, test in skf: counter = counter + 1 clf = GaussianNB() clf = clf.fit([ newdata[i][:] for i in train ], [ data[i][-1] for i in train ]) prediction = clf.predict([ newdata[i][:] for i in test ]) # pred = [] # for i in prediction: # if(i > 1.5): # pred.append(2) # else: # pred.append(1) finalscore = finalscore + score.get_score( prediction , [ data[i][-1] for i in test ]) print "done" finalscore = finalscore*(1.0)/counter print finalscore # score = cross_val_score(clf, newdata[:,:], data[:,-1], cv = 5, scoring = 'get_score') # print "in scores" # for i in score: # print i # print "out of score" # for i in output: # print i # import numpy as np
# print newdata[i] print len(newdata) print len(newdata[0]) print np.shape(newdata) print "data done" print "logistic initialized" # clf.fit(data[:,:-1], data[:,-1]) print "fitted data" skf = StratifiedKFold(data[:,-1], n_folds=10, shuffle=True) output =[] for train, test in skf: clf = RandomForestClassifier(n_estimators = 500) clf = clf.fit([ newdata[i][:] for i in train ], [ data[i][-1] for i in train ]) prediction = clf.predict([ newdata[i][:] for i in test ]) # pred = [] # for i in prediction: # if(i > 1.5): # pred.append(2) # else: # pred.append(1) output.append(score.get_score([ data[i][-1] for i in test ], prediction)) print "done" # score = cross_val_score(clf, newdata[:,:], data[:,-1], cv = 5, scoring = 'get_score') # print "in scores" # for i in score: # print i print "out of score" for i in output: print i