def rescaleimp(file_inpath,file_outpath): imp = IJ.openImage(file_inpath) img = ImgLib.wrap(imp) img2 = Resample(img,0.25) imp = ImgLib.wrap(img2) output = "nrrd=["+file_outpath+"]" IJ.run(imp, "Nrrd ... ", output)
def rescaleimp(file_inpath, file_outpath): """Function to rescale a single 3D NRRD image """ imp = IJ.openImage(file_inpath) img = ImgLib.wrap(imp) img2 = Resample(img, 0.25) imp = ImgLib.wrap(img2) output = "nrrd=[" + file_outpath + "]" IJ.run(imp, "Nrrd ... ", output)
def rescale(folder_in,folder_out): for filename in os.listdir(folder_in): imp =IJ.openImage(os.path.join(folder_in,filename)) img = ImgLib.wrap(imp) img2 = Resample(img,0.25) imp=ImgLib.wrap(img2) output = "nrrd=["+folder_out+filename+"]" IJ.run(imp, "Nrrd ... ", output) IJ.run("Collect Garbage", "");
def rescale(folder_in, folder_out): """Function to rescale 3D NRRD image series""" for filename in os.listdir(folder_in): imp = IJ.openImage(os.path.join(folder_in, filename)) img = ImgLib.wrap(imp) img2 = Resample(img, 0.25) imp = ImgLib.wrap(img2) output = "nrrd=[" + folder_out + filename + "]" IJ.run(imp, "Nrrd ... ", output) imp = None img = None img2 = None gc.collect() time.sleep(15) gc.collect() IJ.run("Collect Garbage", "") IJ.run("Collect Garbage", "")
from script.imglib.math import Compute, Divide, Multiply, Subtract from script.imglib.algorithm import Gauss, Scale2D, Resample from script.imglib import ImgLib from ij import IJ, WindowManager # Start Clean IJ.run("Close All") # 1. Open an image imp = IJ.openImage("https://imagej.nih.gov/ij/images/bridge.gif") ti = imp.getShortTitle() img = ImgLib.wrap(imp) # 2. Simulate a brighfield from a Gauss with a large radius # (First scale down by 4x, then gauss of radius=20, then scale up) brightfield = Resample(Gauss(Scale2D(img, 0.25), 20), img.getDimensions()) # 3. Simulate a perfect darkfield darkfield = 0 # 4. Compute the mean pixel intensity value of the image mean = reduce(lambda s, t: s + t.get(), img, 0) / img.size() # 5. Correct the illumination corrected = Compute.inFloats(Multiply(Divide(Subtract(img, brightfield), Subtract(brightfield, darkfield)), mean)) # 6. ... and show it in ImageJ - it needs to be scaled. This is a 32 bit image ImgLib.wrap(corrected).show() # 7. JRM get the displayed image