def run(nz, n_dense, dataset="mnist", dist_type="perturbed"): """ Constructs a tf.Graph and tf.Session to contain the instance of experiment """ with tf.Graph().as_default(): config = tf.ConfigProto(device_count={"CPU": 8}, intra_op_parallelism_threads=8, inter_op_parallelism_threads=8) config.gpu_options.allow_growth = True config.gpu_options.visible_device_list = "0" with tf.Session(config=config) as sess: arguments = { # experiment def / paths "dataset": dataset, "data_dir": os.path.join(ROOT_DIR, "data"), "category": -1, "dist_type": dist_type, "take_frac": 1, # model def "nz": nz, "batch_size": 128, "n_dense": n_dense, "filters": (4, 8), "stride": (1, 1), "padding": ("same", "same"), "kernel_size": (3, 3), "k_samples": 5, "sumK": 2, "leafK": 2, # learner def "learning_rate": 0.01, "validation_period": 128, "strikes": 10 } current_time = int(time.time()) save_dir = os.path.join( MAIN_DIR, "sp_conviwae", arguments["dataset"] + "_" + arguments["dist_type"], str(arguments["category"]), str(current_time)) output = sp_conviwae.get_results(save_dir=save_dir, **arguments) save_attributes(save_dir, arguments, output) return output
def run(take_frac, dataset="mnist", dist_type="perturbed"): """ Constructs a tf.Graph and tf.Session to contain the instance of experiment """ if dataset == "mnist" and dist_type == "perturbed": nnodes = (32, 32) # TODO nz = 25 elif dataset == "mnist" and dist_type == "discrete": nnodes = (32, 32) # TODO nz = 25 elif dataset == "svhn" and dist_type == "perturbed": nnodes = (32, 32) # TODO nz = 50 elif dataset == "svhn" and dist_type == "discrete": nnodes = (32, 32) # TODO nz = 25 elif dataset == "cifar10" and dist_type == "perturbed": nnodes = (32, 32) # TODO nz = 25 elif dataset == "cifar10" and dist_type == "discrete": nnodes = (32, 32) # TODO nz = 25 else: raise NotImplementedError with tf.Graph().as_default(): config = tf.ConfigProto(device_count={"CPU": 8}, intra_op_parallelism_threads=8, inter_op_parallelism_threads=8) config.gpu_options.allow_growth = True config.gpu_options.visible_device_list = "0" with tf.Session(config=config) as sess: arguments = { # experiment def / paths "dataset": dataset, "data_dir": os.path.join(ROOT_DIR, "data"), "category": -1, "dist_type": dist_type, "take_frac": take_frac, # model def "nz": nz, "batch_size": 128, "nnodes_recog": nnodes, "nnodes_gener": nnodes, "k_samples": 5, "sumK": 2, "leafK": 2, # learner def "learning_rate": 0.01, "validation_period": 128, "strikes": 10 } current_time = int(time.time()) save_dir = os.path.join( MAIN_DIR, "sp_iwae", arguments["dataset"] + "_" + arguments["dist_type"], str(arguments["category"]), str(current_time)) output = sp_iwae.get_results(save_dir=save_dir, **arguments) save_attributes(save_dir, arguments, output) return output