def main(): parser = argparse.ArgumentParser( description='plots cluster sizes, sorted descending') parser.add_argument('--cluster-labels', type=argparse.FileType('r'), help='path to input .json.bz2 cluster labels file', required=True) parser.add_argument('--img', type=argparse.FileType('w'), help='path of output img file', required=True) args = parser.parse_args() input_cluster_labels_path = args.cluster_labels.name output_img_path = args.img.name logger.info('loading cluster labels') cluster_labels = load_communities(input_cluster_labels_path) labels, counts = np.unique(cluster_labels, return_counts=True) counts[::-1].sort() logger.info('plotting sorted cluster sizes') xlabel = 'Cluster' ylabel = 'Anzahl Dokumente' scatter_plot(counts, output_img_path, xlabel, ylabel, False, 3)
def main(): parser = argparse.ArgumentParser(description='plots given 2d-transformed documents represented by their topic distributions (optional: with clusters)') parser.add_argument('--documents-2d', type=argparse.FileType('r'), help='path to input document-2d-data (.npz)', required=True) parser.add_argument('--cluster-labels', type=argparse.FileType('r'), help='path to input cluster labels .json.bz2 file') parser.add_argument('--img-file', type=argparse.FileType('w'), help='path to output im file', required=True) args = parser.parse_args() input_documents_2d_path = args.documents_2d.name input_cluster_labels_path = args.cluster_labels.name if args.cluster_labels else None output_img_path = args.img_file.name logger.info('loading 2d-transformed document topics') documents_2d = load_document_topics(input_documents_2d_path) if input_cluster_labels_path: logger.info('loading cluster labels') cluster_labels = load_communities(input_cluster_labels_path) cluster_labels = np.array(cluster_labels) else: logger.info('no cluster labels given') cluster_labels = None logger.info('plotting 2d-documents') size = 1 scatter_2d_plot(documents_2d[:,0], documents_2d[:,1], output_img_path, labels=cluster_labels, rasterized=True, size=size)
def main(): parser = argparse.ArgumentParser( description= 'maps a given partitioning (clustering/communities) file with document labels and a given metadata file with document titles to a doctitle->partitionlabel file' ) parser.add_argument( '--partitions', type=argparse.FileType('r'), help= 'path to input .json.bz2 partitioning file (communities: JSON-dict / clustering: JSON-list)', required=True) parser.add_argument('--titles', type=argparse.FileType('r'), help='path to input .json.bz2 titles file', required=True) parser.add_argument( '--title-partitions', type=argparse.FileType('w'), help='path to output doctitle->partitionlabel .json file', required=True) args = parser.parse_args() input_partititions_path = args.partitions.name input_titles_path = args.titles.name output_title_partitions_path = args.title_partitions.name logger.info('running with:\n{}'.format( pformat({ 'input_partititions_path': input_partititions_path, 'input_titles_path': input_titles_path, 'output_title_partitions_path': output_title_partitions_path }))) # lade Titel, Partitionierung titles = load_titles(input_titles_path) partitions = load_communities(input_partititions_path) # erzeuge Titel->Partitionslabel-Mapping if isinstance(partitions, dict): # bei Graph-Communities ist Partitionierung dict: bestimme Dok-ID aus Graph-Label des Dokumentes (wie z.B. "d123"), bestimme zug. Dok-Titel title_partitions = { titles[doc_id[1:]]: comm_label for doc_id, comm_label in partitions.items() } else: # bei Clustering ist Partitionierung list: betrachte Index jedes Clusterlabels als Dok-ID, bestimme zug. Dok-Titel title_partitions = { titles[str(doc_id)]: comm_label for doc_id, comm_label in enumerate(partitions) if comm_label >= 0 } logger.info('generated {} title_partitions'.format(len(title_partitions))) logger.debug('title_partitions \n{}'.format(title_partitions)) # speichere Titel->Partitionslabel-Mapping logger.info('saving title communities') save_data_to_json(title_partitions, output_title_partitions_path)
def main(): parser = argparse.ArgumentParser(description='calculated various centrality-related stats (only the giant component of the graph considered!') parser.add_argument('--coauth-graph', type=argparse.FileType('r'), help='path to output pickled, gzipped graph file', required=True) parser.add_argument('--communities', type=argparse.FileType('r'), help='path to input .json.bz2 communities file', required=True) parser.add_argument('--titles', type=argparse.FileType('r'), help='path to input .json.bz2 titles file', required=True) parser.add_argument('--K', type=int, help='number of considered, equaldistand communites 0,floor(1*(N-1)/K),...,N-1', required=True) parser.add_argument('--J', type=int, help='maxiumum number of highest considered nodes per community', required=True) args = parser.parse_args() input_coauth_graph_path = args.coauth_graph.name input_communities_path = args.communities.name input_titles_path = args.titles.name K = args.K J = args.J logger.info('running with:\n{}'.format(pformat({'input_coauth_graph_path':input_coauth_graph_path, 'input_communities_path':input_communities_path, 'input_titles_path':input_titles_path, 'K':K, 'J':J}))) logger.info('loading graph from {}'.format(input_coauth_graph_path)) coauth_graph = Graph.Read_Picklez(input_coauth_graph_path) logger.info('using largest connected component of largest size instead actual graph') coauth_graph = coauth_graph.components().giant() log_igraph(coauth_graph) communities = load_communities(input_communities_path) titles = load_titles(input_titles_path) logger.info('creating vertex clustering of community labels') node_labels = [communities[name] for name in coauth_graph.vs['name']] community_structure = VertexClustering(coauth_graph, membership=node_labels) logger.debug('created vertex clustering {}'.format(community_structure)) community_sizes = list(enumerate(community_structure.sizes())) community_sizes.sort(key=lambda t:t[1], reverse=True) logger.debug('community sizes, sorted descending\n{}'.format(community_sizes)) logger.info('filtering to communities of at least {} nodes'.format(J)) community_sizes = [(commid,size) for commid,size in community_sizes if size >= J] logger.info('filtered to {} communities'.format(len(community_sizes))) N = len(community_sizes) logger.info('calculating considered communities number of communites N={}, considering K={} equidistant communities'.format(N, K)) community_indices = [math.floor(k*(N-1)/(K-1)) for k in range(0,K)] logger.info('considering indices {}'.format(community_indices)) considered_communities = [community_sizes[i] for i in community_indices] logger.info('considering communities (id,size): {}'.format(considered_communities)) find_max_nodes_per_community(community_structure, considered_communities, titles, J, degree) find_max_nodes_per_community(community_structure, considered_communities, titles, J, strength) find_max_nodes_per_community(community_structure, considered_communities, titles, J, betweenness) find_max_nodes_per_community(community_structure, considered_communities, titles, J, weighted_betweenness) find_max_nodes_per_community(community_structure, considered_communities, titles, J, closeness) find_max_nodes_per_community(community_structure, considered_communities, titles, J, weighted_closeness)
def main(): parser = argparse.ArgumentParser( description= 'compares two clusterings/community structures by computing the normalized mutual information score of both documenttitle->clusterlabel mappings (comparison bases of intersection based on equal documenttitles)' ) parser.add_argument( '--clusterings', nargs=2, type=argparse.FileType('r'), metavar=('CLUS1', 'CLUS2'), help='path to two titleclsuterings files (.json/.json.bz2)', required=True) args = parser.parse_args() input_clusterings_paths = (args.clusterings[0].name, args.clusterings[1].name) clustering1 = load_communities(input_clusterings_paths[0]) clustering2 = load_communities(input_clusterings_paths[1]) logger.info('intersecting clusterings by document titles') intersect_titles = sorted(clustering1.keys() & clustering2.keys()) logger.debug('intersect titles \n{}'.format(intersect_titles)) logger.info('number of intersect titles {}'.format(len(intersect_titles))) intsect_labels1 = [clustering1[title] for title in intersect_titles] logger.debug('labels of intersect titles in clustering 1 \n{}'.format( intsect_labels1)) intsect_labels2 = [clustering2[title] for title in intersect_titles] logger.debug('labels of intersect titles in clustering 2 \n{}'.format( intsect_labels2)) intsect_labels1 = np.array(intsect_labels1) intsect_labels2 = np.array(intsect_labels2) score = normalized_mutual_info_score(intsect_labels1, intsect_labels2) logger.info('normalized-mutual-info: {}'.format(score))
def main(): parser = argparse.ArgumentParser(description='creates a file of clusterings: clusters are sorted descending by size, cluster elements are sorted by distance to cluster centroid') parser.add_argument('--document-topics', type=argparse.FileType('r'), help='path to input document-topic-file (.npz)', required=True) parser.add_argument('--cluster-labels', type=argparse.FileType('r'), help='path to input .json.bz2 clustering file', required=True) parser.add_argument('--titles', type=argparse.FileType('r'), help='path to input .json.bz2 titles file', required=True) parser.add_argument('--centrality-data', type=argparse.FileType('w'), help='path to output .json cluster->centrality_data file', required=True) parser.add_argument('--max-docs-per-clus', type=int, help='maxiumum number of highest considered nodes per cluster', required=True) parser.add_argument('--metric', help='calced dissimilarity to centroids (muse be allowd by cdist of scipy)', required=True) args = parser.parse_args() input_document_topics_path = args.document_topics.name input_cluster_labels_path = args.cluster_labels.name input_titles_path = args.titles.name output_centrality_data_path = args.centrality_data.name max_docs_per_clus = args.max_docs_per_clus metric = args.metric logger.info('running with:\n{}'.format(pformat({'input_document_topics_path':input_document_topics_path, 'input_cluster_labels_path':input_cluster_labels_path, 'input_titles_path':input_titles_path, 'output_centrality_data_path':output_centrality_data_path, 'max_docs_per_clus':max_docs_per_clus, 'metric':metric}))) document_topics = load_document_topics(input_document_topics_path) cluster_labels = load_communities(input_cluster_labels_path) document_titles = load_titles(input_titles_path) clusters = get_clusters_from_labels(cluster_labels) logger.info('computing {}-centralities of {} documents in {} communities'.format(metric, len(cluster_labels), len(clusters))) centrality_data = {} for clus_id, cluster in enumerate(clusters): max_doc_ids, centralities = get_top_central_cluster_docs(cluster, document_topics, max_docs_per_clus, metric) logger.debug('max doc ids {}'.format(max_doc_ids)) logger.debug('max doc centralities {}'.format(centralities)) max_doc_titles = get_document_titles(max_doc_ids, document_titles) logger.debug('max titles: {}'.format(max_doc_titles)) centrality_data_of_cluster = { 'size': len(cluster), 'titles': max_doc_titles, 'centralities': centralities } centrality_data[clus_id] = centrality_data_of_cluster logger.info('saving cluster centrality data (titles,centralities) of {} clusters'.format(len(centrality_data))) save_data_to_json(centrality_data, output_centrality_data_path)
def main(): parser = argparse.ArgumentParser( description= 'plots the descending purities of each cluster (purity: highest cosine similarity to a [0,...,0,1,0,...,0] topic vector)' ) parser.add_argument('--document-topics', type=argparse.FileType('r'), help='path to input document-topic-file (.npz)', required=True) parser.add_argument('--cluster-labels', type=argparse.FileType('r'), help='path to input .json.bz2 clustering file', required=True) parser.add_argument('--plot', type=argparse.FileType('w'), help='path to output purity plot file', required=True) args = parser.parse_args() input_document_topics_path = args.document_topics.name input_cluster_labels_path = args.cluster_labels.name output_plot_path = args.plot.name document_topics = load_document_topics(input_document_topics_path) cluster_labels = load_communities(input_cluster_labels_path) clusters = get_clusters_from_labels(cluster_labels) logger.info('calculating purity of {} clusters'.format(len(clusters))) cluster_purities = [ get_cluster_purity(cluster, document_topics) for cluster in clusters ] logger.info('calculated {} purity values'.format(len(cluster_purities))) cluster_purities = np.array(cluster_purities) cluster_purities[::-1].sort() xlabel = 'Cluster' ylabel = 'Reinheit' logger.info('plotting purities to {}'.format(output_plot_path)) scatter_plot(cluster_purities, output_plot_path, xlabel, ylabel)
def main(): parser = argparse.ArgumentParser( description= 'calculates silhouette coefficient of a given clustering and its document-topic-matrix' ) parser.add_argument('--document-topics', type=argparse.FileType('r'), help='path to input document-topic-file (.npz)', required=True) parser.add_argument('--cluster-labels', type=argparse.FileType('r'), help='path to input .json.bz2 cluster labels file', required=True) parser.add_argument('--metric', choices=_VALID_METRICS, help='distance function to use', required=True) args = parser.parse_args() input_document_topics_path = args.document_topics.name input_cluster_labels_path = args.cluster_labels.name metric = args.metric logger.info('loading document topics') document_topics = load_document_topics(input_document_topics_path) logger.info('loading cluster labels') cluster_labels = load_communities(input_cluster_labels_path) logger.debug(cluster_labels) logger.info('calclating unsupervised evaluation metrics') sil_score = silhouette_score(document_topics, cluster_labels, metric=metric) # groß=gut logger.info('{} silhouette coefficient: {}'.format(metric, sil_score)) ch_score = calinski_harabaz_score( document_topics, cluster_labels ) # between-scatter durch within-scatter inkl. Straftermen -> groß=gut logger.info('calinski harabaz score: {}'.format(ch_score))
def main(): parser = argparse.ArgumentParser( description= 'calculated the most central documents of each community and writes their centrality data (titles,centralities) to a JSON file (exactly min(#nodes of community,J) titles are save per community)' ) parser.add_argument('--coauth-graph', type=argparse.FileType('r'), help='path to output pickled, gzipped graph file', required=True) parser.add_argument('--communities', type=argparse.FileType('r'), help='path to input .json.bz2 communities file', required=True) parser.add_argument('--titles', type=argparse.FileType('r'), help='path to input .json.bz2 titles file', required=True) parser.add_argument( '--centrality-data', type=argparse.FileType('w'), help='path to output .json community->centrality_data file', required=True) centrality_measures = { 'degree': degree, 'strength': strength, 'betweenness': betweenness, 'closeness': closeness, 'weighted_betweenness': weighted_betweenness, 'weighted_closeness': weighted_closeness } parser.add_argument('--centrality-measure', choices=centrality_measures, help='centrality measure', required=True) parser.add_argument( '--max-docs-per-comm', type=int, help='maxiumum number of highest considered nodes per community', required=True) args = parser.parse_args() input_coauth_graph_path = args.coauth_graph.name input_communities_path = args.communities.name input_titles_path = args.titles.name output_centrality_data_path = args.centrality_data.name centrality_measure = args.centrality_measure max_docs_per_comm = args.max_docs_per_comm logger.info('running with:\n{}'.format( pformat({ 'input_coauth_graph_path': input_coauth_graph_path, 'input_communities_path': input_communities_path, 'input_titles_path': input_titles_path, 'output_centrality_data_path': output_centrality_data_path, 'centrality_measure': centrality_measure, 'max_docs_per_comm': max_docs_per_comm }))) logger.info('loading graph from {}'.format(input_coauth_graph_path)) coauth_graph = Graph.Read_Picklez(input_coauth_graph_path) log_igraph(coauth_graph) communities = load_communities(input_communities_path) titles = load_titles(input_titles_path) # entferne Knoten, die nicht in gespeicherter Communitystruktur auftauchen (z.B. weil nicht in Riesencommunity sind) logger.info('removing nodes of graph without community labels') node_names = coauth_graph.vs['name'] node_names_of_communities = communities.keys() node_names_not_in_communities = set(node_names) - set( node_names_of_communities) coauth_graph.delete_vertices(node_names_not_in_communities) logger.info('graph stats after removing') log_igraph(coauth_graph) logger.info('creating vertex clustering of community labels') node_labels = [communities[name] for name in coauth_graph.vs['name']] community_structure = VertexClustering(coauth_graph, membership=node_labels) logger.debug('created vertex clustering {}'.format(community_structure)) logger.info( 'computing {}-centralities of {} documents in {} communities'.format( centrality_measure, community_structure.n, len(community_structure))) centrality_function = centrality_measures[centrality_measure] centrality_data = {} for comm_id in range(len(community_structure)): comm_subgraph = community_structure.subgraph(comm_id) max_node_names_centralities = get_top_nodes_of_communities( comm_subgraph, max_docs_per_comm, centrality_function) logger.debug( 'max_node_names_weights {}'.format(max_node_names_centralities)) max_node_names, centralities = zip(*max_node_names_centralities) max_doc_titles = get_document_titles_of_node_names( max_node_names, titles) logger.debug('max titles: {}'.format(max_doc_titles)) centrality_data_of_community = { 'size': comm_subgraph.vcount(), 'titles': max_doc_titles, 'centralities': centralities } centrality_data[comm_id] = centrality_data_of_community logger.info( 'saving community centrality data (titles,centralities) of {} communities' .format(len(centrality_data))) save_data_to_json(centrality_data, output_centrality_data_path)