def main(args=None):

    # Initialization
    param = Param()
    start_time = time.time()

    parser = get_parser()
    arguments = parser.parse(sys.argv[1:])

    fname_anat = arguments['-i']
    fname_centerline = arguments['-s']
    if '-smooth' in arguments:
        sigma = arguments['-smooth']
    if '-param' in arguments:
        param.update(arguments['-param'])
    if '-r' in arguments:
        remove_temp_files = int(arguments['-r'])
    verbose = int(arguments.get('-v'))
    sct.init_sct(log_level=verbose, update=True)  # Update log level

    # Display arguments
    sct.printv('\nCheck input arguments...')
    sct.printv('  Volume to smooth .................. ' + fname_anat)
    sct.printv('  Centerline ........................ ' + fname_centerline)
    sct.printv('  Sigma (mm) ........................ ' + str(sigma))
    sct.printv('  Verbose ........................... ' + str(verbose))

    # Check that input is 3D:
    from spinalcordtoolbox.image import Image
    nx, ny, nz, nt, px, py, pz, pt = Image(fname_anat).dim
    dim = 4  # by default, will be adjusted later
    if nt == 1:
        dim = 3
    if nz == 1:
        dim = 2
    if dim == 4:
        sct.printv('WARNING: the input image is 4D, please split your image to 3D before smoothing spinalcord using :\n'
                   'sct_image -i ' + fname_anat + ' -split t -o ' + fname_anat, verbose, 'warning')
        sct.printv('4D images not supported, aborting ...', verbose, 'error')

    # Extract path/file/extension
    path_anat, file_anat, ext_anat = sct.extract_fname(fname_anat)
    path_centerline, file_centerline, ext_centerline = sct.extract_fname(fname_centerline)

    path_tmp = sct.tmp_create(basename="smooth_spinalcord", verbose=verbose)

    # Copying input data to tmp folder
    sct.printv('\nCopying input data to tmp folder and convert to nii...', verbose)
    sct.copy(fname_anat, os.path.join(path_tmp, "anat" + ext_anat))
    sct.copy(fname_centerline, os.path.join(path_tmp, "centerline" + ext_centerline))

    # go to tmp folder
    curdir = os.getcwd()
    os.chdir(path_tmp)

    # convert to nii format
    convert('anat' + ext_anat, 'anat.nii')
    convert('centerline' + ext_centerline, 'centerline.nii')

    # Change orientation of the input image into RPI
    sct.printv('\nOrient input volume to RPI orientation...')
    fname_anat_rpi = msct_image.Image("anat.nii") \
     .change_orientation("RPI", generate_path=True) \
     .save() \
     .absolutepath

    # Change orientation of the input image into RPI
    sct.printv('\nOrient centerline to RPI orientation...')
    fname_centerline_rpi = msct_image.Image("centerline.nii") \
     .change_orientation("RPI", generate_path=True) \
     .save() \
     .absolutepath

    # Straighten the spinal cord
    # straighten segmentation
    sct.printv('\nStraighten the spinal cord using centerline/segmentation...', verbose)
    cache_sig = sct.cache_signature(input_files=[fname_anat_rpi, fname_centerline_rpi],
                                    input_params={"x": "spline"})
    cachefile = os.path.join(curdir, "straightening.cache")
    if sct.cache_valid(cachefile, cache_sig) and os.path.isfile(os.path.join(curdir, 'warp_curve2straight.nii.gz')) and os.path.isfile(os.path.join(curdir, 'warp_straight2curve.nii.gz')) and os.path.isfile(os.path.join(curdir, 'straight_ref.nii.gz')):
        # if they exist, copy them into current folder
        sct.printv('Reusing existing warping field which seems to be valid', verbose, 'warning')
        sct.copy(os.path.join(curdir, 'warp_curve2straight.nii.gz'), 'warp_curve2straight.nii.gz')
        sct.copy(os.path.join(curdir, 'warp_straight2curve.nii.gz'), 'warp_straight2curve.nii.gz')
        sct.copy(os.path.join(curdir, 'straight_ref.nii.gz'), 'straight_ref.nii.gz')
        # apply straightening
        sct.run(['sct_apply_transfo', '-i', fname_anat_rpi, '-w', 'warp_curve2straight.nii.gz', '-d', 'straight_ref.nii.gz', '-o', 'anat_rpi_straight.nii', '-x', 'spline'], verbose)
    else:
        sct.run(['sct_straighten_spinalcord', '-i', fname_anat_rpi, '-o', 'anat_rpi_straight.nii', '-s', fname_centerline_rpi, '-x', 'spline', '-param', 'algo_fitting='+param.algo_fitting], verbose)
        sct.cache_save(cachefile, cache_sig)
        # move warping fields locally (to use caching next time)
        sct.copy('warp_curve2straight.nii.gz', os.path.join(curdir, 'warp_curve2straight.nii.gz'))
        sct.copy('warp_straight2curve.nii.gz', os.path.join(curdir, 'warp_straight2curve.nii.gz'))

    # Smooth the straightened image along z
    sct.printv('\nSmooth the straightened image...')
    sigma_smooth = ",".join([str(i) for i in sigma])
    sct_maths.main(args=['-i', 'anat_rpi_straight.nii',
                         '-smooth', sigma_smooth,
                         '-o', 'anat_rpi_straight_smooth.nii',
                         '-v', '0'])
    # Apply the reversed warping field to get back the curved spinal cord
    sct.printv('\nApply the reversed warping field to get back the curved spinal cord...')
    sct.run(['sct_apply_transfo', '-i', 'anat_rpi_straight_smooth.nii', '-o', 'anat_rpi_straight_smooth_curved.nii', '-d', 'anat.nii', '-w', 'warp_straight2curve.nii.gz', '-x', 'spline'], verbose)

    # replace zeroed voxels by original image (issue #937)
    sct.printv('\nReplace zeroed voxels by original image...', verbose)
    nii_smooth = Image('anat_rpi_straight_smooth_curved.nii')
    data_smooth = nii_smooth.data
    data_input = Image('anat.nii').data
    indzero = np.where(data_smooth == 0)
    data_smooth[indzero] = data_input[indzero]
    nii_smooth.data = data_smooth
    nii_smooth.save('anat_rpi_straight_smooth_curved_nonzero.nii')

    # come back
    os.chdir(curdir)

    # Generate output file
    sct.printv('\nGenerate output file...')
    sct.generate_output_file(os.path.join(path_tmp, "anat_rpi_straight_smooth_curved_nonzero.nii"),
                             file_anat + '_smooth' + ext_anat)

    # Remove temporary files
    if remove_temp_files == 1:
        sct.printv('\nRemove temporary files...')
        sct.rmtree(path_tmp)

    # Display elapsed time
    elapsed_time = time.time() - start_time
    sct.printv('\nFinished! Elapsed time: ' + str(int(np.round(elapsed_time))) + 's\n')

    sct.display_viewer_syntax([file_anat, file_anat + '_smooth'], verbose=verbose)
Пример #2
0
def main(args=None):

    # initializations
    param = Param()

    # check user arguments
    if not args:
        args = sys.argv[1:]

    # Get parser info
    parser = get_parser()
    arguments = parser.parse(args)
    fname_data = arguments['-i']
    fname_seg = arguments['-s']
    if '-l' in arguments:
        fname_landmarks = arguments['-l']
        label_type = 'body'
    elif '-ldisc' in arguments:
        fname_landmarks = arguments['-ldisc']
        label_type = 'disc'
    else:
        sct.printv('ERROR: Labels should be provided.', 1, 'error')
    if '-ofolder' in arguments:
        path_output = arguments['-ofolder']
    else:
        path_output = ''

    param.path_qc = arguments.get("-qc", None)

    path_template = arguments['-t']
    contrast_template = arguments['-c']
    ref = arguments['-ref']
    param.remove_temp_files = int(arguments.get('-r'))
    verbose = int(arguments.get('-v'))
    sct.init_sct(log_level=verbose, update=True)  # Update log level
    param.verbose = verbose  # TODO: not clean, unify verbose or param.verbose in code, but not both
    param_centerline = ParamCenterline(
        algo_fitting=arguments['-centerline-algo'],
        smooth=arguments['-centerline-smooth'])
    # registration parameters
    if '-param' in arguments:
        # reset parameters but keep step=0 (might be overwritten if user specified step=0)
        paramreg = ParamregMultiStep([step0])
        if ref == 'subject':
            paramreg.steps['0'].dof = 'Tx_Ty_Tz_Rx_Ry_Rz_Sz'
        # add user parameters
        for paramStep in arguments['-param']:
            paramreg.addStep(paramStep)
    else:
        paramreg = ParamregMultiStep([step0, step1, step2])
        # if ref=subject, initialize registration using different affine parameters
        if ref == 'subject':
            paramreg.steps['0'].dof = 'Tx_Ty_Tz_Rx_Ry_Rz_Sz'

    # initialize other parameters
    zsubsample = param.zsubsample

    # retrieve template file names
    file_template_vertebral_labeling = get_file_label(os.path.join(path_template, 'template'), 'vertebral labeling')
    file_template = get_file_label(os.path.join(path_template, 'template'), contrast_template.upper() + '-weighted template')
    file_template_seg = get_file_label(os.path.join(path_template, 'template'), 'spinal cord')

    # start timer
    start_time = time.time()

    # get fname of the template + template objects
    fname_template = os.path.join(path_template, 'template', file_template)
    fname_template_vertebral_labeling = os.path.join(path_template, 'template', file_template_vertebral_labeling)
    fname_template_seg = os.path.join(path_template, 'template', file_template_seg)
    fname_template_disc_labeling = os.path.join(path_template, 'template', 'PAM50_label_disc.nii.gz')

    # check file existence
    # TODO: no need to do that!
    sct.printv('\nCheck template files...')
    sct.check_file_exist(fname_template, verbose)
    sct.check_file_exist(fname_template_vertebral_labeling, verbose)
    sct.check_file_exist(fname_template_seg, verbose)
    path_data, file_data, ext_data = sct.extract_fname(fname_data)

    # sct.printv(arguments)
    sct.printv('\nCheck parameters:', verbose)
    sct.printv('  Data:                 ' + fname_data, verbose)
    sct.printv('  Landmarks:            ' + fname_landmarks, verbose)
    sct.printv('  Segmentation:         ' + fname_seg, verbose)
    sct.printv('  Path template:        ' + path_template, verbose)
    sct.printv('  Remove temp files:    ' + str(param.remove_temp_files), verbose)

    # check input labels
    labels = check_labels(fname_landmarks, label_type=label_type)

    vertebral_alignment = False
    if len(labels) > 2 and label_type == 'disc':
        vertebral_alignment = True

    path_tmp = sct.tmp_create(basename="register_to_template", verbose=verbose)

    # set temporary file names
    ftmp_data = 'data.nii'
    ftmp_seg = 'seg.nii.gz'
    ftmp_label = 'label.nii.gz'
    ftmp_template = 'template.nii'
    ftmp_template_seg = 'template_seg.nii.gz'
    ftmp_template_label = 'template_label.nii.gz'

    # copy files to temporary folder
    sct.printv('\nCopying input data to tmp folder and convert to nii...', verbose)
    Image(fname_data).save(os.path.join(path_tmp, ftmp_data))
    Image(fname_seg).save(os.path.join(path_tmp, ftmp_seg))
    Image(fname_landmarks).save(os.path.join(path_tmp, ftmp_label))
    Image(fname_template).save(os.path.join(path_tmp, ftmp_template))
    Image(fname_template_seg).save(os.path.join(path_tmp, ftmp_template_seg))
    Image(fname_template_vertebral_labeling).save(os.path.join(path_tmp, ftmp_template_label))
    if label_type == 'disc':
        Image(fname_template_disc_labeling).save(os.path.join(path_tmp, ftmp_template_label))

    # go to tmp folder
    curdir = os.getcwd()
    os.chdir(path_tmp)

    # Generate labels from template vertebral labeling
    if label_type == 'body':
        sct.printv('\nGenerate labels from template vertebral labeling', verbose)
        ftmp_template_label_, ftmp_template_label = ftmp_template_label, sct.add_suffix(ftmp_template_label, "_body")
        sct_label_utils.main(args=['-i', ftmp_template_label_, '-vert-body', '0', '-o', ftmp_template_label])

    # check if provided labels are available in the template
    sct.printv('\nCheck if provided labels are available in the template', verbose)
    image_label_template = Image(ftmp_template_label)
    labels_template = image_label_template.getNonZeroCoordinates(sorting='value')
    if labels[-1].value > labels_template[-1].value:
        sct.printv('ERROR: Wrong landmarks input. Labels must have correspondence in template space. \nLabel max '
                   'provided: ' + str(labels[-1].value) + '\nLabel max from template: ' +
                   str(labels_template[-1].value), verbose, 'error')

    # if only one label is present, force affine transformation to be Tx,Ty,Tz only (no scaling)
    if len(labels) == 1:
        paramreg.steps['0'].dof = 'Tx_Ty_Tz'
        sct.printv('WARNING: Only one label is present. Forcing initial transformation to: ' + paramreg.steps['0'].dof,
                   1, 'warning')

    # Project labels onto the spinal cord centerline because later, an affine transformation is estimated between the
    # template's labels (centered in the cord) and the subject's labels (assumed to be centered in the cord).
    # If labels are not centered, mis-registration errors are observed (see issue #1826)
    ftmp_label = project_labels_on_spinalcord(ftmp_label, ftmp_seg, param_centerline)

    # binarize segmentation (in case it has values below 0 caused by manual editing)
    sct.printv('\nBinarize segmentation', verbose)
    ftmp_seg_, ftmp_seg = ftmp_seg, sct.add_suffix(ftmp_seg, "_bin")
    sct_maths.main(['-i', ftmp_seg_,
                    '-bin', '0.5',
                    '-o', ftmp_seg])

    # Switch between modes: subject->template or template->subject
    if ref == 'template':

        # resample data to 1mm isotropic
        sct.printv('\nResample data to 1mm isotropic...', verbose)
        resample_file(ftmp_data, add_suffix(ftmp_data, '_1mm'), '1.0x1.0x1.0', 'mm', 'linear', verbose)
        ftmp_data = add_suffix(ftmp_data, '_1mm')
        resample_file(ftmp_seg, add_suffix(ftmp_seg, '_1mm'), '1.0x1.0x1.0', 'mm', 'linear', verbose)
        ftmp_seg = add_suffix(ftmp_seg, '_1mm')
        # N.B. resampling of labels is more complicated, because they are single-point labels, therefore resampling
        # with nearest neighbour can make them disappear.
        resample_labels(ftmp_label, ftmp_data, add_suffix(ftmp_label, '_1mm'))
        ftmp_label = add_suffix(ftmp_label, '_1mm')

        # Change orientation of input images to RPI
        sct.printv('\nChange orientation of input images to RPI...', verbose)

        ftmp_data = Image(ftmp_data).change_orientation("RPI", generate_path=True).save().absolutepath
        ftmp_seg = Image(ftmp_seg).change_orientation("RPI", generate_path=True).save().absolutepath
        ftmp_label = Image(ftmp_label).change_orientation("RPI", generate_path=True).save().absolutepath


        ftmp_seg_, ftmp_seg = ftmp_seg, add_suffix(ftmp_seg, '_crop')
        if vertebral_alignment:
            # cropping the segmentation based on the label coverage to ensure good registration with vertebral alignment
            # See https://github.com/neuropoly/spinalcordtoolbox/pull/1669 for details
            image_labels = Image(ftmp_label)
            coordinates_labels = image_labels.getNonZeroCoordinates(sorting='z')
            nx, ny, nz, nt, px, py, pz, pt = image_labels.dim
            offset_crop = 10.0 * pz  # cropping the image 10 mm above and below the highest and lowest label
            cropping_slices = [coordinates_labels[0].z - offset_crop, coordinates_labels[-1].z + offset_crop]
            # make sure that the cropping slices do not extend outside of the slice range (issue #1811)
            if cropping_slices[0] < 0:
                cropping_slices[0] = 0
            if cropping_slices[1] > nz:
                cropping_slices[1] = nz
            msct_image.spatial_crop(Image(ftmp_seg_), dict(((2, np.int32(np.round(cropping_slices))),))).save(ftmp_seg)
        else:
            # if we do not align the vertebral levels, we crop the segmentation from top to bottom
            im_seg_rpi = Image(ftmp_seg_)
            bottom = 0
            for data in msct_image.SlicerOneAxis(im_seg_rpi, "IS"):
                if (data != 0).any():
                    break
                bottom += 1
            top = im_seg_rpi.data.shape[2]
            for data in msct_image.SlicerOneAxis(im_seg_rpi, "SI"):
                if (data != 0).any():
                    break
                top -= 1
            msct_image.spatial_crop(im_seg_rpi, dict(((2, (bottom, top)),))).save(ftmp_seg)


        # straighten segmentation
        sct.printv('\nStraighten the spinal cord using centerline/segmentation...', verbose)

        # check if warp_curve2straight and warp_straight2curve already exist (i.e. no need to do it another time)
        fn_warp_curve2straight = os.path.join(curdir, "warp_curve2straight.nii.gz")
        fn_warp_straight2curve = os.path.join(curdir, "warp_straight2curve.nii.gz")
        fn_straight_ref = os.path.join(curdir, "straight_ref.nii.gz")

        cache_input_files=[ftmp_seg]
        if vertebral_alignment:
            cache_input_files += [
             ftmp_template_seg,
             ftmp_label,
             ftmp_template_label,
            ]
        cache_sig = sct.cache_signature(
         input_files=cache_input_files,
        )
        cachefile = os.path.join(curdir, "straightening.cache")
        if sct.cache_valid(cachefile, cache_sig) and os.path.isfile(fn_warp_curve2straight) and os.path.isfile(fn_warp_straight2curve) and os.path.isfile(fn_straight_ref):
            sct.printv('Reusing existing warping field which seems to be valid', verbose, 'warning')
            sct.copy(fn_warp_curve2straight, 'warp_curve2straight.nii.gz')
            sct.copy(fn_warp_straight2curve, 'warp_straight2curve.nii.gz')
            sct.copy(fn_straight_ref, 'straight_ref.nii.gz')
            # apply straightening
            sct_apply_transfo.main(args=[
                '-i', ftmp_seg,
                '-w', 'warp_curve2straight.nii.gz',
                '-d', 'straight_ref.nii.gz',
                '-o', add_suffix(ftmp_seg, '_straight')])
        else:
            from spinalcordtoolbox.straightening import SpinalCordStraightener
            sc_straight = SpinalCordStraightener(ftmp_seg, ftmp_seg)
            sc_straight.param_centerline = param_centerline
            sc_straight.output_filename = add_suffix(ftmp_seg, '_straight')
            sc_straight.path_output = './'
            sc_straight.qc = '0'
            sc_straight.remove_temp_files = param.remove_temp_files
            sc_straight.verbose = verbose

            if vertebral_alignment:
                sc_straight.centerline_reference_filename = ftmp_template_seg
                sc_straight.use_straight_reference = True
                sc_straight.discs_input_filename = ftmp_label
                sc_straight.discs_ref_filename = ftmp_template_label

            sc_straight.straighten()
            sct.cache_save(cachefile, cache_sig)

        # N.B. DO NOT UPDATE VARIABLE ftmp_seg BECAUSE TEMPORARY USED LATER
        # re-define warping field using non-cropped space (to avoid issue #367)
        sct_concat_transfo.main(args=[
            '-w', 'warp_straight2curve.nii.gz',
            '-d', ftmp_data,
            '-o', 'warp_straight2curve.nii.gz'])

        if vertebral_alignment:
            sct.copy('warp_curve2straight.nii.gz', 'warp_curve2straightAffine.nii.gz')
        else:
            # Label preparation:
            # --------------------------------------------------------------------------------
            # Remove unused label on template. Keep only label present in the input label image
            sct.printv('\nRemove unused label on template. Keep only label present in the input label image...', verbose)
            sct.run(['sct_label_utils', '-i', ftmp_template_label, '-o', ftmp_template_label, '-remove-reference', ftmp_label])

            # Dilating the input label so they can be straighten without losing them
            sct.printv('\nDilating input labels using 3vox ball radius')
            sct_maths.main(['-i', ftmp_label,
                            '-dilate', '3',
                            '-o', add_suffix(ftmp_label, '_dilate')])
            ftmp_label = add_suffix(ftmp_label, '_dilate')

            # Apply straightening to labels
            sct.printv('\nApply straightening to labels...', verbose)
            sct_apply_transfo.main(args=[
                '-i', ftmp_label,
                '-o', add_suffix(ftmp_label, '_straight'),
                '-d', add_suffix(ftmp_seg, '_straight'),
                '-w', 'warp_curve2straight.nii.gz',
                '-x', 'nn'])
            ftmp_label = add_suffix(ftmp_label, '_straight')

            # Compute rigid transformation straight landmarks --> template landmarks
            sct.printv('\nEstimate transformation for step #0...', verbose)
            try:
                register_landmarks(ftmp_label, ftmp_template_label, paramreg.steps['0'].dof,
                                   fname_affine='straight2templateAffine.txt', verbose=verbose)
            except RuntimeError:
                raise('Input labels do not seem to be at the right place. Please check the position of the labels. '
                      'See documentation for more details: https://www.slideshare.net/neuropoly/sct-course-20190121/42')

            # Concatenate transformations: curve --> straight --> affine
            sct.printv('\nConcatenate transformations: curve --> straight --> affine...', verbose)
            sct_concat_transfo.main(args=[
                '-w', ['warp_curve2straight.nii.gz', 'straight2templateAffine.txt'],
                '-d', 'template.nii',
                '-o', 'warp_curve2straightAffine.nii.gz'])

        # Apply transformation
        sct.printv('\nApply transformation...', verbose)
        sct_apply_transfo.main(args=[
            '-i', ftmp_data,
            '-o', add_suffix(ftmp_data, '_straightAffine'),
            '-d', ftmp_template,
            '-w', 'warp_curve2straightAffine.nii.gz'])
        ftmp_data = add_suffix(ftmp_data, '_straightAffine')
        sct_apply_transfo.main(args=[
            '-i', ftmp_seg,
            '-o', add_suffix(ftmp_seg, '_straightAffine'),
            '-d', ftmp_template,
            '-w', 'warp_curve2straightAffine.nii.gz',
            '-x', 'linear'])
        ftmp_seg = add_suffix(ftmp_seg, '_straightAffine')

        """
        # Benjamin: Issue from Allan Martin, about the z=0 slice that is screwed up, caused by the affine transform.
        # Solution found: remove slices below and above landmarks to avoid rotation effects
        points_straight = []
        for coord in landmark_template:
            points_straight.append(coord.z)
        min_point, max_point = int(np.round(np.min(points_straight))), int(np.round(np.max(points_straight)))
        ftmp_seg_, ftmp_seg = ftmp_seg, add_suffix(ftmp_seg, '_black')
        msct_image.spatial_crop(Image(ftmp_seg_), dict(((2, (min_point,max_point)),))).save(ftmp_seg)

        """
        # open segmentation
        im = Image(ftmp_seg)
        im_new = msct_image.empty_like(im)
        # binarize
        im_new.data = im.data > 0.5
        # find min-max of anat2template (for subsequent cropping)
        zmin_template, zmax_template = msct_image.find_zmin_zmax(im_new, threshold=0.5)
        # save binarized segmentation
        im_new.save(add_suffix(ftmp_seg, '_bin')) # unused?
        # crop template in z-direction (for faster processing)
        # TODO: refactor to use python module instead of doing i/o
        sct.printv('\nCrop data in template space (for faster processing)...', verbose)
        ftmp_template_, ftmp_template = ftmp_template, add_suffix(ftmp_template, '_crop')
        msct_image.spatial_crop(Image(ftmp_template_), dict(((2, (zmin_template,zmax_template)),))).save(ftmp_template)

        ftmp_template_seg_, ftmp_template_seg = ftmp_template_seg, add_suffix(ftmp_template_seg, '_crop')
        msct_image.spatial_crop(Image(ftmp_template_seg_), dict(((2, (zmin_template,zmax_template)),))).save(ftmp_template_seg)

        ftmp_data_, ftmp_data = ftmp_data, add_suffix(ftmp_data, '_crop')
        msct_image.spatial_crop(Image(ftmp_data_), dict(((2, (zmin_template,zmax_template)),))).save(ftmp_data)

        ftmp_seg_, ftmp_seg = ftmp_seg, add_suffix(ftmp_seg, '_crop')
        msct_image.spatial_crop(Image(ftmp_seg_), dict(((2, (zmin_template,zmax_template)),))).save(ftmp_seg)

        # sub-sample in z-direction
        # TODO: refactor to use python module instead of doing i/o
        sct.printv('\nSub-sample in z-direction (for faster processing)...', verbose)
        sct.run(['sct_resample', '-i', ftmp_template, '-o', add_suffix(ftmp_template, '_sub'), '-f', '1x1x' + zsubsample], verbose)
        ftmp_template = add_suffix(ftmp_template, '_sub')
        sct.run(['sct_resample', '-i', ftmp_template_seg, '-o', add_suffix(ftmp_template_seg, '_sub'), '-f', '1x1x' + zsubsample], verbose)
        ftmp_template_seg = add_suffix(ftmp_template_seg, '_sub')
        sct.run(['sct_resample', '-i', ftmp_data, '-o', add_suffix(ftmp_data, '_sub'), '-f', '1x1x' + zsubsample], verbose)
        ftmp_data = add_suffix(ftmp_data, '_sub')
        sct.run(['sct_resample', '-i', ftmp_seg, '-o', add_suffix(ftmp_seg, '_sub'), '-f', '1x1x' + zsubsample], verbose)
        ftmp_seg = add_suffix(ftmp_seg, '_sub')

        # Registration straight spinal cord to template
        sct.printv('\nRegister straight spinal cord to template...', verbose)

        # loop across registration steps
        warp_forward = []
        warp_inverse = []
        for i_step in range(1, len(paramreg.steps)):
            sct.printv('\nEstimate transformation for step #' + str(i_step) + '...', verbose)
            # identify which is the src and dest
            if paramreg.steps[str(i_step)].type == 'im':
                src = ftmp_data
                dest = ftmp_template
                interp_step = 'linear'
            elif paramreg.steps[str(i_step)].type == 'seg':
                src = ftmp_seg
                dest = ftmp_template_seg
                interp_step = 'nn'
            else:
                sct.printv('ERROR: Wrong image type.', 1, 'error')

            if paramreg.steps[str(i_step)].algo == 'centermassrot' and paramreg.steps[str(i_step)].rot_method == 'hog':
                src_seg = ftmp_seg
                dest_seg = ftmp_template_seg
            # if step>1, apply warp_forward_concat to the src image to be used
            if i_step > 1:
                # apply transformation from previous step, to use as new src for registration
                sct_apply_transfo.main(args=[
                    '-i', src,
                    '-d', dest,
                    '-w', warp_forward,
                    '-o', add_suffix(src, '_regStep' + str(i_step - 1)),
                    '-x', interp_step])
                src = add_suffix(src, '_regStep' + str(i_step - 1))
                if paramreg.steps[str(i_step)].algo == 'centermassrot' and paramreg.steps[str(i_step)].rot_method == 'hog':  # also apply transformation to the seg
                    sct_apply_transfo.main(args=[
                        '-i', src_seg,
                        '-d', dest_seg,
                        '-w', warp_forward,
                        '-o', add_suffix(src, '_regStep' + str(i_step - 1)),
                        '-x', interp_step])
                    src_seg = add_suffix(src_seg, '_regStep' + str(i_step - 1))
            # register src --> dest
            # TODO: display param for debugging
            if paramreg.steps[str(i_step)].algo == 'centermassrot' and paramreg.steps[str(i_step)].rot_method == 'hog': # im_seg case
                warp_forward_out, warp_inverse_out = register([src, src_seg], [dest, dest_seg], paramreg, param, str(i_step))
            else:
                warp_forward_out, warp_inverse_out = register(src, dest, paramreg, param, str(i_step))
            warp_forward.append(warp_forward_out)
            warp_inverse.append(warp_inverse_out)

        # Concatenate transformations: anat --> template
        sct.printv('\nConcatenate transformations: anat --> template...', verbose)
        warp_forward.insert(0, 'warp_curve2straightAffine.nii.gz')
        sct_concat_transfo.main(args=[
            '-w', warp_forward,
            '-d', 'template.nii',
            '-o', 'warp_anat2template.nii.gz'])

        # Concatenate transformations: template --> anat
        sct.printv('\nConcatenate transformations: template --> anat...', verbose)
        warp_inverse.reverse()
        if vertebral_alignment:
            warp_inverse.append('warp_straight2curve.nii.gz')
            sct_concat_transfo.main(args=[
                '-w', warp_inverse,
                '-d', 'data.nii',
                '-o', 'warp_template2anat.nii.gz'])
        else:
            warp_inverse.append('straight2templateAffine.txt')
            warp_inverse.append('warp_straight2curve.nii.gz')
            sct_concat_transfo.main(args=[
                '-w', warp_inverse,
                '-winv', ['straight2templateAffine.txt'],
                '-d', 'data.nii',
                '-o', 'warp_template2anat.nii.gz'])

    # register template->subject
    elif ref == 'subject':

        # Change orientation of input images to RPI
        sct.printv('\nChange orientation of input images to RPI...', verbose)
        ftmp_data = Image(ftmp_data).change_orientation("RPI", generate_path=True).save().absolutepath
        ftmp_seg = Image(ftmp_seg).change_orientation("RPI", generate_path=True).save().absolutepath
        ftmp_label = Image(ftmp_label).change_orientation("RPI", generate_path=True).save().absolutepath

        # Remove unused label on template. Keep only label present in the input label image
        sct.printv('\nRemove unused label on template. Keep only label present in the input label image...', verbose)
        sct.run(['sct_label_utils', '-i', ftmp_template_label, '-o', ftmp_template_label, '-remove-reference', ftmp_label])

        # Add one label because at least 3 orthogonal labels are required to estimate an affine transformation. This
        # new label is added at the level of the upper most label (lowest value), at 1cm to the right.
        for i_file in [ftmp_label, ftmp_template_label]:
            im_label = Image(i_file)
            coord_label = im_label.getCoordinatesAveragedByValue()  # N.B. landmarks are sorted by value
            # Create new label
            from copy import deepcopy
            new_label = deepcopy(coord_label[0])
            # move it 5mm to the left (orientation is RAS)
            nx, ny, nz, nt, px, py, pz, pt = im_label.dim
            new_label.x = np.round(coord_label[0].x + 5.0 / px)
            # assign value 99
            new_label.value = 99
            # Add to existing image
            im_label.data[int(new_label.x), int(new_label.y), int(new_label.z)] = new_label.value
            # Overwrite label file
            # im_label.absolutepath = 'label_rpi_modif.nii.gz'
            im_label.save()

        # Bring template to subject space using landmark-based transformation
        sct.printv('\nEstimate transformation for step #0...', verbose)
        warp_forward = ['template2subjectAffine.txt']
        warp_inverse = ['template2subjectAffine.txt']
        try:
            register_landmarks(ftmp_template_label, ftmp_label, paramreg.steps['0'].dof, fname_affine=warp_forward[0], verbose=verbose, path_qc="./")
        except Exception:
            sct.printv('ERROR: input labels do not seem to be at the right place. Please check the position of the labels. See documentation for more details: https://www.slideshare.net/neuropoly/sct-course-20190121/42', verbose=verbose, type='error')

        # loop across registration steps
        for i_step in range(1, len(paramreg.steps)):
            sct.printv('\nEstimate transformation for step #' + str(i_step) + '...', verbose)
            # identify which is the src and dest
            if paramreg.steps[str(i_step)].type == 'im':
                src = ftmp_template
                dest = ftmp_data
                interp_step = 'linear'
            elif paramreg.steps[str(i_step)].type == 'seg':
                src = ftmp_template_seg
                dest = ftmp_seg
                interp_step = 'nn'
            else:
                sct.printv('ERROR: Wrong image type.', 1, 'error')
            # apply transformation from previous step, to use as new src for registration
            sct_apply_transfo.main(args=[
                '-i', src,
                '-d', dest,
                '-w', warp_forward,
                '-o', add_suffix(src, '_regStep' + str(i_step - 1)),
                '-x', interp_step])
            src = add_suffix(src, '_regStep' + str(i_step - 1))
            # register src --> dest
            # TODO: display param for debugging
            warp_forward_out, warp_inverse_out = register(src, dest, paramreg, param, str(i_step))
            warp_forward.append(warp_forward_out)
            warp_inverse.insert(0, warp_inverse_out)

        # Concatenate transformations:
        sct.printv('\nConcatenate transformations: template --> subject...', verbose)
        sct_concat_transfo.main(args=[
            '-w', warp_forward,
            '-d', 'data.nii',
            '-o', 'warp_template2anat.nii.gz'])
        sct.printv('\nConcatenate transformations: subject --> template...', verbose)
        sct_concat_transfo.main(args=[
            '-w', warp_inverse,
            '-winv', ['template2subjectAffine.txt'],
            '-d', 'template.nii',
            '-o', 'warp_anat2template.nii.gz'])

    # Apply warping fields to anat and template
    sct.run(['sct_apply_transfo', '-i', 'template.nii', '-o', 'template2anat.nii.gz', '-d', 'data.nii', '-w', 'warp_template2anat.nii.gz', '-crop', '1'], verbose)
    sct.run(['sct_apply_transfo', '-i', 'data.nii', '-o', 'anat2template.nii.gz', '-d', 'template.nii', '-w', 'warp_anat2template.nii.gz', '-crop', '1'], verbose)

    # come back
    os.chdir(curdir)

    # Generate output files
    sct.printv('\nGenerate output files...', verbose)
    fname_template2anat = os.path.join(path_output, 'template2anat' + ext_data)
    fname_anat2template = os.path.join(path_output, 'anat2template' + ext_data)
    sct.generate_output_file(os.path.join(path_tmp, "warp_template2anat.nii.gz"), os.path.join(path_output, "warp_template2anat.nii.gz"), verbose)
    sct.generate_output_file(os.path.join(path_tmp, "warp_anat2template.nii.gz"), os.path.join(path_output, "warp_anat2template.nii.gz"), verbose)
    sct.generate_output_file(os.path.join(path_tmp, "template2anat.nii.gz"), fname_template2anat, verbose)
    sct.generate_output_file(os.path.join(path_tmp, "anat2template.nii.gz"), fname_anat2template, verbose)
    if ref == 'template':
        # copy straightening files in case subsequent SCT functions need them
        sct.generate_output_file(os.path.join(path_tmp, "warp_curve2straight.nii.gz"), os.path.join(path_output, "warp_curve2straight.nii.gz"), verbose)
        sct.generate_output_file(os.path.join(path_tmp, "warp_straight2curve.nii.gz"), os.path.join(path_output, "warp_straight2curve.nii.gz"), verbose)
        sct.generate_output_file(os.path.join(path_tmp, "straight_ref.nii.gz"), os.path.join(path_output, "straight_ref.nii.gz"), verbose)

    # Delete temporary files
    if param.remove_temp_files:
        sct.printv('\nDelete temporary files...', verbose)
        sct.rmtree(path_tmp, verbose=verbose)

    # display elapsed time
    elapsed_time = time.time() - start_time
    sct.printv('\nFinished! Elapsed time: ' + str(int(np.round(elapsed_time))) + 's', verbose)

    qc_dataset = arguments.get("-qc-dataset", None)
    qc_subject = arguments.get("-qc-subject", None)
    if param.path_qc is not None:
        generate_qc(fname_data, fname_in2=fname_template2anat, fname_seg=fname_seg, args=args,
                    path_qc=os.path.abspath(param.path_qc), dataset=qc_dataset, subject=qc_subject,
                    process='sct_register_to_template')
    sct.display_viewer_syntax([fname_data, fname_template2anat], verbose=verbose)
    sct.display_viewer_syntax([fname_template, fname_anat2template], verbose=verbose)
def main(args=None):

    # Initialization
    # fname_anat = ''
    # fname_centerline = ''
    sigma = 3  # default value of the standard deviation for the Gaussian smoothing (in terms of number of voxels)
    param = Param()
    # remove_temp_files = param.remove_temp_files
    # verbose = param.verbose
    start_time = time.time()

    parser = get_parser()
    arguments = parser.parse(sys.argv[1:])

    fname_anat = arguments['-i']
    fname_centerline = arguments['-s']
    if '-smooth' in arguments:
        sigma = arguments['-smooth']
    if '-param' in arguments:
        param.update(arguments['-param'])
    if '-r' in arguments:
        remove_temp_files = int(arguments['-r'])
    if '-v' in arguments:
        verbose = int(arguments['-v'])

    # Display arguments
    sct.printv('\nCheck input arguments...')
    sct.printv('  Volume to smooth .................. ' + fname_anat)
    sct.printv('  Centerline ........................ ' + fname_centerline)
    sct.printv('  Sigma (mm) ........................ ' + str(sigma))
    sct.printv('  Verbose ........................... ' + str(verbose))

    # Check that input is 3D:
    from spinalcordtoolbox.image import Image
    nx, ny, nz, nt, px, py, pz, pt = Image(fname_anat).dim
    dim = 4  # by default, will be adjusted later
    if nt == 1:
        dim = 3
    if nz == 1:
        dim = 2
    if dim == 4:
        sct.printv(
            'WARNING: the input image is 4D, please split your image to 3D before smoothing spinalcord using :\n'
            'sct_image -i ' + fname_anat + ' -split t -o ' + fname_anat,
            verbose, 'warning')
        sct.printv('4D images not supported, aborting ...', verbose, 'error')

    # Extract path/file/extension
    path_anat, file_anat, ext_anat = sct.extract_fname(fname_anat)
    path_centerline, file_centerline, ext_centerline = sct.extract_fname(
        fname_centerline)

    path_tmp = sct.tmp_create(basename="smooth_spinalcord", verbose=verbose)

    # Copying input data to tmp folder
    sct.printv('\nCopying input data to tmp folder and convert to nii...',
               verbose)
    sct.copy(fname_anat, os.path.join(path_tmp, "anat" + ext_anat))
    sct.copy(fname_centerline,
             os.path.join(path_tmp, "centerline" + ext_centerline))

    # go to tmp folder
    curdir = os.getcwd()
    os.chdir(path_tmp)

    # convert to nii format
    convert('anat' + ext_anat, 'anat.nii')
    convert('centerline' + ext_centerline, 'centerline.nii')

    # Change orientation of the input image into RPI
    sct.printv('\nOrient input volume to RPI orientation...')
    fname_anat_rpi = msct_image.Image("anat.nii") \
     .change_orientation("RPI", generate_path=True) \
     .save() \
     .absolutepath

    # Change orientation of the input image into RPI
    sct.printv('\nOrient centerline to RPI orientation...')
    fname_centerline_rpi = msct_image.Image("centerline.nii") \
     .change_orientation("RPI", generate_path=True) \
     .save() \
     .absolutepath

    # Straighten the spinal cord
    # straighten segmentation
    sct.printv('\nStraighten the spinal cord using centerline/segmentation...',
               verbose)
    cache_sig = sct.cache_signature(
        input_files=[fname_anat_rpi, fname_centerline_rpi],
        input_params={"x": "spline"},
    )
    cachefile = os.path.join(curdir, "straightening.cache")
    if sct.cache_valid(cachefile, cache_sig) and os.path.isfile(
            os.path.join(
                curdir, 'warp_curve2straight.nii.gz')) and os.path.isfile(
                    os.path.join(
                        curdir,
                        'warp_straight2curve.nii.gz')) and os.path.isfile(
                            os.path.join(curdir, 'straight_ref.nii.gz')):
        # if they exist, copy them into current folder
        sct.printv('Reusing existing warping field which seems to be valid',
                   verbose, 'warning')
        sct.copy(os.path.join(curdir, 'warp_curve2straight.nii.gz'),
                 'warp_curve2straight.nii.gz')
        sct.copy(os.path.join(curdir, 'warp_straight2curve.nii.gz'),
                 'warp_straight2curve.nii.gz')
        sct.copy(os.path.join(curdir, 'straight_ref.nii.gz'),
                 'straight_ref.nii.gz')
        # apply straightening
        sct.run([
            'sct_apply_transfo', '-i', fname_anat_rpi, '-w',
            'warp_curve2straight.nii.gz', '-d', 'straight_ref.nii.gz', '-o',
            'anat_rpi_straight.nii', '-x', 'spline'
        ], verbose)
    else:
        sct.run([
            'sct_straighten_spinalcord', '-i', fname_anat_rpi, '-o',
            'anat_rpi_straight.nii', '-s', fname_centerline_rpi, '-x',
            'spline', '-param', 'algo_fitting=' + param.algo_fitting
        ], verbose)
        sct.cache_save(cachefile, cache_sig)

    # Smooth the straightened image along z
    sct.printv('\nSmooth the straightened image along z...')
    sct.run([
        'sct_maths', '-i', 'anat_rpi_straight.nii', '-smooth',
        '0,0,' + str(sigma), '-o', 'anat_rpi_straight_smooth.nii'
    ], verbose)

    # Apply the reversed warping field to get back the curved spinal cord
    sct.printv(
        '\nApply the reversed warping field to get back the curved spinal cord...'
    )
    sct.run([
        'sct_apply_transfo', '-i', 'anat_rpi_straight_smooth.nii', '-o',
        'anat_rpi_straight_smooth_curved.nii', '-d', 'anat.nii', '-w',
        'warp_straight2curve.nii.gz', '-x', 'spline'
    ], verbose)

    # replace zeroed voxels by original image (issue #937)
    sct.printv('\nReplace zeroed voxels by original image...', verbose)
    nii_smooth = Image('anat_rpi_straight_smooth_curved.nii')
    data_smooth = nii_smooth.data
    data_input = Image('anat.nii').data
    indzero = np.where(data_smooth == 0)
    data_smooth[indzero] = data_input[indzero]
    nii_smooth.data = data_smooth
    nii_smooth.save('anat_rpi_straight_smooth_curved_nonzero.nii')

    # come back
    os.chdir(curdir)

    # Generate output file
    sct.printv('\nGenerate output file...')
    sct.generate_output_file(
        os.path.join(path_tmp, "anat_rpi_straight_smooth_curved_nonzero.nii"),
        file_anat + '_smooth' + ext_anat)

    # Remove temporary files
    if remove_temp_files == 1:
        sct.printv('\nRemove temporary files...')
        sct.rmtree(path_tmp)

    # Display elapsed time
    elapsed_time = time.time() - start_time
    sct.printv('\nFinished! Elapsed time: ' +
               str(int(np.round(elapsed_time))) + 's\n')

    sct.display_viewer_syntax([file_anat, file_anat + '_smooth'],
                              verbose=verbose)
def main(args=None):

    # initializations
    param = Param()

    # check user arguments
    if not args:
        args = sys.argv[1:]

    # Get parser info
    parser = get_parser()
    arguments = parser.parse(args)
    fname_data = arguments['-i']
    fname_seg = arguments['-s']
    if '-l' in arguments:
        fname_landmarks = arguments['-l']
        label_type = 'body'
    elif '-ldisc' in arguments:
        fname_landmarks = arguments['-ldisc']
        label_type = 'disc'
    else:
        sct.printv('ERROR: Labels should be provided.', 1, 'error')
    if '-ofolder' in arguments:
        path_output = arguments['-ofolder']
    else:
        path_output = ''

    param.path_qc = arguments.get("-qc", None)

    path_template = arguments['-t']
    contrast_template = arguments['-c']
    ref = arguments['-ref']
    remove_temp_files = int(arguments['-r'])
    verbose = int(arguments['-v'])
    param.verbose = verbose  # TODO: not clean, unify verbose or param.verbose in code, but not both
    if '-param-straighten' in arguments:
        param.param_straighten = arguments['-param-straighten']
    # if '-cpu-nb' in arguments:
    #     arg_cpu = ' -cpu-nb '+str(arguments['-cpu-nb'])
    # else:
    #     arg_cpu = ''
    # registration parameters
    if '-param' in arguments:
        # reset parameters but keep step=0 (might be overwritten if user specified step=0)
        paramreg = ParamregMultiStep([step0])
        if ref == 'subject':
            paramreg.steps['0'].dof = 'Tx_Ty_Tz_Rx_Ry_Rz_Sz'
        # add user parameters
        for paramStep in arguments['-param']:
            paramreg.addStep(paramStep)
    else:
        paramreg = ParamregMultiStep([step0, step1, step2])
        # if ref=subject, initialize registration using different affine parameters
        if ref == 'subject':
            paramreg.steps['0'].dof = 'Tx_Ty_Tz_Rx_Ry_Rz_Sz'

    # initialize other parameters
    # file_template_label = param.file_template_label
    zsubsample = param.zsubsample
    # smoothing_sigma = param.smoothing_sigma

    # retrieve template file names
    file_template_vertebral_labeling = get_file_label(
        os.path.join(path_template, 'template'), 'vertebral labeling')
    file_template = get_file_label(
        os.path.join(path_template, 'template'),
        contrast_template.upper() + '-weighted template')
    file_template_seg = get_file_label(os.path.join(path_template, 'template'),
                                       'spinal cord')

    # start timer
    start_time = time.time()

    # get fname of the template + template objects
    fname_template = os.path.join(path_template, 'template', file_template)
    fname_template_vertebral_labeling = os.path.join(
        path_template, 'template', file_template_vertebral_labeling)
    fname_template_seg = os.path.join(path_template, 'template',
                                      file_template_seg)
    fname_template_disc_labeling = os.path.join(path_template, 'template',
                                                'PAM50_label_disc.nii.gz')

    # check file existence
    # TODO: no need to do that!
    sct.printv('\nCheck template files...')
    sct.check_file_exist(fname_template, verbose)
    sct.check_file_exist(fname_template_vertebral_labeling, verbose)
    sct.check_file_exist(fname_template_seg, verbose)
    path_data, file_data, ext_data = sct.extract_fname(fname_data)

    # sct.printv(arguments)
    sct.printv('\nCheck parameters:', verbose)
    sct.printv('  Data:                 ' + fname_data, verbose)
    sct.printv('  Landmarks:            ' + fname_landmarks, verbose)
    sct.printv('  Segmentation:         ' + fname_seg, verbose)
    sct.printv('  Path template:        ' + path_template, verbose)
    sct.printv('  Remove temp files:    ' + str(remove_temp_files), verbose)

    # check if data, segmentation and landmarks are in the same space
    # JULIEN 2017-04-25: removed because of issue #1168
    # sct.printv('\nCheck if data, segmentation and landmarks are in the same space...')
    # if not sct.check_if_same_space(fname_data, fname_seg):
    #     sct.printv('ERROR: Data image and segmentation are not in the same space. Please check space and orientation of your files', verbose, 'error')
    # if not sct.check_if_same_space(fname_data, fname_landmarks):
    #     sct.printv('ERROR: Data image and landmarks are not in the same space. Please check space and orientation of your files', verbose, 'error')

    # check input labels
    labels = check_labels(fname_landmarks, label_type=label_type)

    vertebral_alignment = False
    if len(labels) > 2 and label_type == 'disc':
        vertebral_alignment = True

    path_tmp = sct.tmp_create(basename="register_to_template", verbose=verbose)

    # set temporary file names
    ftmp_data = 'data.nii'
    ftmp_seg = 'seg.nii.gz'
    ftmp_label = 'label.nii.gz'
    ftmp_template = 'template.nii'
    ftmp_template_seg = 'template_seg.nii.gz'
    ftmp_template_label = 'template_label.nii.gz'
    # ftmp_template_label_disc = 'template_label_disc.nii.gz'

    # copy files to temporary folder
    sct.printv('\nCopying input data to tmp folder and convert to nii...',
               verbose)
    sct.run([
        'sct_convert', '-i', fname_data, '-o',
        os.path.join(path_tmp, ftmp_data)
    ])
    sct.run([
        'sct_convert', '-i', fname_seg, '-o',
        os.path.join(path_tmp, ftmp_seg)
    ])
    sct.run([
        'sct_convert', '-i', fname_landmarks, '-o',
        os.path.join(path_tmp, ftmp_label)
    ])
    sct.run([
        'sct_convert', '-i', fname_template, '-o',
        os.path.join(path_tmp, ftmp_template)
    ])
    sct.run([
        'sct_convert', '-i', fname_template_seg, '-o',
        os.path.join(path_tmp, ftmp_template_seg)
    ])
    sct_convert.main(args=[
        '-i', fname_template_vertebral_labeling, '-o',
        os.path.join(path_tmp, ftmp_template_label)
    ])
    if label_type == 'disc':
        sct_convert.main(args=[
            '-i', fname_template_disc_labeling, '-o',
            os.path.join(path_tmp, ftmp_template_label)
        ])
    # sct.run('sct_convert -i '+fname_template_label+' -o '+os.path.join(path_tmp, ftmp_template_label))

    # go to tmp folder
    curdir = os.getcwd()
    os.chdir(path_tmp)

    # Generate labels from template vertebral labeling
    if label_type == 'body':
        sct.printv('\nGenerate labels from template vertebral labeling',
                   verbose)
        sct_label_utils.main(args=[
            '-i', ftmp_template_label, '-vert-body', '0', '-o',
            ftmp_template_label
        ])

    # check if provided labels are available in the template
    sct.printv('\nCheck if provided labels are available in the template',
               verbose)
    image_label_template = Image(ftmp_template_label)
    labels_template = image_label_template.getNonZeroCoordinates(
        sorting='value')
    if labels[-1].value > labels_template[-1].value:
        sct.printv(
            'ERROR: Wrong landmarks input. Labels must have correspondence in template space. \nLabel max '
            'provided: ' + str(labels[-1].value) +
            '\nLabel max from template: ' + str(labels_template[-1].value),
            verbose, 'error')

    # if only one label is present, force affine transformation to be Tx,Ty,Tz only (no scaling)
    if len(labels) == 1:
        paramreg.steps['0'].dof = 'Tx_Ty_Tz'
        sct.printv(
            'WARNING: Only one label is present. Forcing initial transformation to: '
            + paramreg.steps['0'].dof, 1, 'warning')

    # Project labels onto the spinal cord centerline because later, an affine transformation is estimated between the
    # template's labels (centered in the cord) and the subject's labels (assumed to be centered in the cord).
    # If labels are not centered, mis-registration errors are observed (see issue #1826)
    ftmp_label = project_labels_on_spinalcord(ftmp_label, ftmp_seg)

    # binarize segmentation (in case it has values below 0 caused by manual editing)
    sct.printv('\nBinarize segmentation', verbose)
    sct.run(
        ['sct_maths', '-i', 'seg.nii.gz', '-bin', '0.5', '-o', 'seg.nii.gz'])

    # smooth segmentation (jcohenadad, issue #613)
    # sct.printv('\nSmooth segmentation...', verbose)
    # sct.run('sct_maths -i '+ftmp_seg+' -smooth 1.5 -o '+add_suffix(ftmp_seg, '_smooth'))
    # jcohenadad: updated 2016-06-16: DO NOT smooth the seg anymore. Issue #
    # sct.run('sct_maths -i '+ftmp_seg+' -smooth 0 -o '+add_suffix(ftmp_seg, '_smooth'))
    # ftmp_seg = add_suffix(ftmp_seg, '_smooth')

    # Switch between modes: subject->template or template->subject
    if ref == 'template':

        # resample data to 1mm isotropic
        sct.printv('\nResample data to 1mm isotropic...', verbose)
        sct.run([
            'sct_resample', '-i', ftmp_data, '-mm', '1.0x1.0x1.0', '-x',
            'linear', '-o',
            add_suffix(ftmp_data, '_1mm')
        ])
        ftmp_data = add_suffix(ftmp_data, '_1mm')
        sct.run([
            'sct_resample', '-i', ftmp_seg, '-mm', '1.0x1.0x1.0', '-x',
            'linear', '-o',
            add_suffix(ftmp_seg, '_1mm')
        ])
        ftmp_seg = add_suffix(ftmp_seg, '_1mm')
        # N.B. resampling of labels is more complicated, because they are single-point labels, therefore resampling
        # with nearest neighbour can make them disappear.
        resample_labels(ftmp_label, ftmp_data, add_suffix(ftmp_label, '_1mm'))
        ftmp_label = add_suffix(ftmp_label, '_1mm')

        # Change orientation of input images to RPI
        sct.printv('\nChange orientation of input images to RPI...', verbose)
        sct.run([
            'sct_image', '-i', ftmp_data, '-setorient', 'RPI', '-o',
            add_suffix(ftmp_data, '_rpi')
        ])
        ftmp_data = add_suffix(ftmp_data, '_rpi')
        sct.run([
            'sct_image', '-i', ftmp_seg, '-setorient', 'RPI', '-o',
            add_suffix(ftmp_seg, '_rpi')
        ])
        ftmp_seg = add_suffix(ftmp_seg, '_rpi')
        sct.run([
            'sct_image', '-i', ftmp_label, '-setorient', 'RPI', '-o',
            add_suffix(ftmp_label, '_rpi')
        ])
        ftmp_label = add_suffix(ftmp_label, '_rpi')

        if vertebral_alignment:
            # cropping the segmentation based on the label coverage to ensure good registration with vertebral alignment
            # See https://github.com/neuropoly/spinalcordtoolbox/pull/1669 for details
            image_labels = Image(ftmp_label)
            coordinates_labels = image_labels.getNonZeroCoordinates(
                sorting='z')
            nx, ny, nz, nt, px, py, pz, pt = image_labels.dim
            offset_crop = 10.0 * pz  # cropping the image 10 mm above and below the highest and lowest label
            cropping_slices = [
                coordinates_labels[0].z - offset_crop,
                coordinates_labels[-1].z + offset_crop
            ]
            # make sure that the cropping slices do not extend outside of the slice range (issue #1811)
            if cropping_slices[0] < 0:
                cropping_slices[0] = 0
            if cropping_slices[1] > nz:
                cropping_slices[1] = nz
            status_crop, output_crop = sct.run([
                'sct_crop_image', '-i', ftmp_seg, '-o',
                add_suffix(ftmp_seg, '_crop'), '-dim', '2', '-start',
                str(cropping_slices[0]), '-end',
                str(cropping_slices[1])
            ], verbose)
        else:
            # if we do not align the vertebral levels, we crop the segmentation from top to bottom
            status_crop, output_crop = sct.run([
                'sct_crop_image', '-i', ftmp_seg, '-o',
                add_suffix(ftmp_seg, '_crop'), '-dim', '2', '-bzmax'
            ], verbose)
            cropping_slices = output_crop.split('Dimension 2: ')[1].split(
                '\n')[0].split(' ')

        # output: segmentation_rpi_crop.nii.gz
        ftmp_seg = add_suffix(ftmp_seg, '_crop')

        # straighten segmentation
        sct.printv(
            '\nStraighten the spinal cord using centerline/segmentation...',
            verbose)

        # check if warp_curve2straight and warp_straight2curve already exist (i.e. no need to do it another time)
        fn_warp_curve2straight = os.path.join(curdir,
                                              "warp_curve2straight.nii.gz")
        fn_warp_straight2curve = os.path.join(curdir,
                                              "warp_straight2curve.nii.gz")
        fn_straight_ref = os.path.join(curdir, "straight_ref.nii.gz")

        cache_input_files = [ftmp_seg]
        if vertebral_alignment:
            cache_input_files += [
                ftmp_template_seg,
                ftmp_label,
                ftmp_template_label,
            ]
        cache_sig = sct.cache_signature(input_files=cache_input_files, )
        cachefile = os.path.join(curdir, "straightening.cache")
        if sct.cache_valid(
                cachefile, cache_sig
        ) and os.path.isfile(fn_warp_curve2straight) and os.path.isfile(
                fn_warp_straight2curve) and os.path.isfile(fn_straight_ref):
            sct.printv(
                'Reusing existing warping field which seems to be valid',
                verbose, 'warning')
            sct.copy(fn_warp_curve2straight, 'warp_curve2straight.nii.gz')
            sct.copy(fn_warp_straight2curve, 'warp_straight2curve.nii.gz')
            sct.copy(fn_straight_ref, 'straight_ref.nii.gz')
            # apply straightening
            sct.run([
                'sct_apply_transfo', '-i', ftmp_seg, '-w',
                'warp_curve2straight.nii.gz', '-d', 'straight_ref.nii.gz',
                '-o',
                add_suffix(ftmp_seg, '_straight')
            ])
        else:
            from sct_straighten_spinalcord import SpinalCordStraightener
            sc_straight = SpinalCordStraightener(ftmp_seg, ftmp_seg)
            sc_straight.output_filename = add_suffix(ftmp_seg, '_straight')
            sc_straight.path_output = './'
            sc_straight.qc = '0'
            sc_straight.remove_temp_files = remove_temp_files
            sc_straight.verbose = verbose

            if vertebral_alignment:
                sc_straight.centerline_reference_filename = ftmp_template_seg
                sc_straight.use_straight_reference = True
                sc_straight.discs_input_filename = ftmp_label
                sc_straight.discs_ref_filename = ftmp_template_label

            sc_straight.straighten()
            sct.cache_save(cachefile, cache_sig)

        # N.B. DO NOT UPDATE VARIABLE ftmp_seg BECAUSE TEMPORARY USED LATER
        # re-define warping field using non-cropped space (to avoid issue #367)
        sct.run([
            'sct_concat_transfo', '-w', 'warp_straight2curve.nii.gz', '-d',
            ftmp_data, '-o', 'warp_straight2curve.nii.gz'
        ])

        if vertebral_alignment:
            sct.copy('warp_curve2straight.nii.gz',
                     'warp_curve2straightAffine.nii.gz')
        else:
            # Label preparation:
            # --------------------------------------------------------------------------------
            # Remove unused label on template. Keep only label present in the input label image
            sct.printv(
                '\nRemove unused label on template. Keep only label present in the input label image...',
                verbose)
            sct.run([
                'sct_label_utils', '-i', ftmp_template_label, '-o',
                ftmp_template_label, '-remove', ftmp_label
            ])

            # Dilating the input label so they can be straighten without losing them
            sct.printv('\nDilating input labels using 3vox ball radius')
            sct.run([
                'sct_maths', '-i', ftmp_label, '-o',
                add_suffix(ftmp_label, '_dilate'), '-dilate', '3'
            ])
            ftmp_label = add_suffix(ftmp_label, '_dilate')

            # Apply straightening to labels
            sct.printv('\nApply straightening to labels...', verbose)
            sct.run([
                'sct_apply_transfo', '-i', ftmp_label, '-o',
                add_suffix(ftmp_label, '_straight'), '-d',
                add_suffix(ftmp_seg, '_straight'), '-w',
                'warp_curve2straight.nii.gz', '-x', 'nn'
            ])
            ftmp_label = add_suffix(ftmp_label, '_straight')

            # Compute rigid transformation straight landmarks --> template landmarks
            sct.printv('\nEstimate transformation for step #0...', verbose)
            from msct_register_landmarks import register_landmarks
            try:
                register_landmarks(ftmp_label,
                                   ftmp_template_label,
                                   paramreg.steps['0'].dof,
                                   fname_affine='straight2templateAffine.txt',
                                   verbose=verbose)
            except Exception:
                sct.printv(
                    'ERROR: input labels do not seem to be at the right place. Please check the position of the labels. See documentation for more details: https://sourceforge.net/p/spinalcordtoolbox/wiki/create_labels/',
                    verbose=verbose,
                    type='error')

            # Concatenate transformations: curve --> straight --> affine
            sct.printv(
                '\nConcatenate transformations: curve --> straight --> affine...',
                verbose)
            sct.run([
                'sct_concat_transfo', '-w',
                'warp_curve2straight.nii.gz,straight2templateAffine.txt', '-d',
                'template.nii', '-o', 'warp_curve2straightAffine.nii.gz'
            ])

        # Apply transformation
        sct.printv('\nApply transformation...', verbose)
        sct.run([
            'sct_apply_transfo', '-i', ftmp_data, '-o',
            add_suffix(ftmp_data, '_straightAffine'), '-d', ftmp_template,
            '-w', 'warp_curve2straightAffine.nii.gz'
        ])
        ftmp_data = add_suffix(ftmp_data, '_straightAffine')
        sct.run([
            'sct_apply_transfo', '-i', ftmp_seg, '-o',
            add_suffix(ftmp_seg, '_straightAffine'), '-d', ftmp_template, '-w',
            'warp_curve2straightAffine.nii.gz', '-x', 'linear'
        ])
        ftmp_seg = add_suffix(ftmp_seg, '_straightAffine')
        """
        # Benjamin: Issue from Allan Martin, about the z=0 slice that is screwed up, caused by the affine transform.
        # Solution found: remove slices below and above landmarks to avoid rotation effects
        points_straight = []
        for coord in landmark_template:
            points_straight.append(coord.z)
        min_point, max_point = int(round(np.min(points_straight))), int(round(np.max(points_straight)))
        sct.run('sct_crop_image -i ' + ftmp_seg + ' -start ' + str(min_point) + ' -end ' + str(max_point) + ' -dim 2 -b 0 -o ' + add_suffix(ftmp_seg, '_black'))
        ftmp_seg = add_suffix(ftmp_seg, '_black')
        """

        # binarize
        sct.printv('\nBinarize segmentation...', verbose)
        sct.run([
            'sct_maths', '-i', ftmp_seg, '-bin', '0.5', '-o',
            add_suffix(ftmp_seg, '_bin')
        ])
        ftmp_seg = add_suffix(ftmp_seg, '_bin')

        # find min-max of anat2template (for subsequent cropping)
        zmin_template, zmax_template = find_zmin_zmax(ftmp_seg)

        # crop template in z-direction (for faster processing)
        sct.printv('\nCrop data in template space (for faster processing)...',
                   verbose)
        sct.run([
            'sct_crop_image', '-i', ftmp_template, '-o',
            add_suffix(ftmp_template, '_crop'), '-dim', '2', '-start',
            str(zmin_template), '-end',
            str(zmax_template)
        ])
        ftmp_template = add_suffix(ftmp_template, '_crop')
        sct.run([
            'sct_crop_image', '-i', ftmp_template_seg, '-o',
            add_suffix(ftmp_template_seg, '_crop'), '-dim', '2', '-start',
            str(zmin_template), '-end',
            str(zmax_template)
        ])
        ftmp_template_seg = add_suffix(ftmp_template_seg, '_crop')
        sct.run([
            'sct_crop_image', '-i', ftmp_data, '-o',
            add_suffix(ftmp_data, '_crop'), '-dim', '2', '-start',
            str(zmin_template), '-end',
            str(zmax_template)
        ])
        ftmp_data = add_suffix(ftmp_data, '_crop')
        sct.run([
            'sct_crop_image', '-i', ftmp_seg, '-o',
            add_suffix(ftmp_seg, '_crop'), '-dim', '2', '-start',
            str(zmin_template), '-end',
            str(zmax_template)
        ])
        ftmp_seg = add_suffix(ftmp_seg, '_crop')

        # sub-sample in z-direction
        sct.printv('\nSub-sample in z-direction (for faster processing)...',
                   verbose)
        sct.run([
            'sct_resample', '-i', ftmp_template, '-o',
            add_suffix(ftmp_template, '_sub'), '-f', '1x1x' + zsubsample
        ], verbose)
        ftmp_template = add_suffix(ftmp_template, '_sub')
        sct.run([
            'sct_resample', '-i', ftmp_template_seg, '-o',
            add_suffix(ftmp_template_seg, '_sub'), '-f', '1x1x' + zsubsample
        ], verbose)
        ftmp_template_seg = add_suffix(ftmp_template_seg, '_sub')
        sct.run([
            'sct_resample', '-i', ftmp_data, '-o',
            add_suffix(ftmp_data, '_sub'), '-f', '1x1x' + zsubsample
        ], verbose)
        ftmp_data = add_suffix(ftmp_data, '_sub')
        sct.run([
            'sct_resample', '-i', ftmp_seg, '-o',
            add_suffix(ftmp_seg, '_sub'), '-f', '1x1x' + zsubsample
        ], verbose)
        ftmp_seg = add_suffix(ftmp_seg, '_sub')

        # Registration straight spinal cord to template
        sct.printv('\nRegister straight spinal cord to template...', verbose)

        # loop across registration steps
        warp_forward = []
        warp_inverse = []
        for i_step in range(1, len(paramreg.steps)):
            sct.printv(
                '\nEstimate transformation for step #' + str(i_step) + '...',
                verbose)
            # identify which is the src and dest
            if paramreg.steps[str(i_step)].type == 'im':
                src = ftmp_data
                dest = ftmp_template
                interp_step = 'linear'
            elif paramreg.steps[str(i_step)].type == 'seg':
                src = ftmp_seg
                dest = ftmp_template_seg
                interp_step = 'nn'
            else:
                sct.printv('ERROR: Wrong image type.', 1, 'error')
            # if step>1, apply warp_forward_concat to the src image to be used
            if i_step > 1:
                # sct.run('sct_apply_transfo -i '+src+' -d '+dest+' -w '+','.join(warp_forward)+' -o '+sct.add_suffix(src, '_reg')+' -x '+interp_step, verbose)
                # apply transformation from previous step, to use as new src for registration
                sct.run([
                    'sct_apply_transfo', '-i', src, '-d', dest, '-w',
                    ','.join(warp_forward), '-o',
                    add_suffix(src,
                               '_regStep' + str(i_step - 1)), '-x', interp_step
                ], verbose)
                src = add_suffix(src, '_regStep' + str(i_step - 1))
            # register src --> dest
            # TODO: display param for debugging
            warp_forward_out, warp_inverse_out = register(
                src, dest, paramreg, param, str(i_step))
            warp_forward.append(warp_forward_out)
            warp_inverse.append(warp_inverse_out)

        # Concatenate transformations:
        sct.printv('\nConcatenate transformations: anat --> template...',
                   verbose)
        sct.run([
            'sct_concat_transfo', '-w',
            'warp_curve2straightAffine.nii.gz,' + ','.join(warp_forward), '-d',
            'template.nii', '-o', 'warp_anat2template.nii.gz'
        ], verbose)
        # sct.run('sct_concat_transfo -w warp_curve2straight.nii.gz,straight2templateAffine.txt,'+','.join(warp_forward)+' -d template.nii -o warp_anat2template.nii.gz', verbose)
        sct.printv('\nConcatenate transformations: template --> anat...',
                   verbose)
        warp_inverse.reverse()

        if vertebral_alignment:
            sct.run([
                'sct_concat_transfo', '-w',
                ','.join(warp_inverse) + ',warp_straight2curve.nii.gz', '-d',
                'data.nii', '-o', 'warp_template2anat.nii.gz'
            ], verbose)
        else:
            sct.run([
                'sct_concat_transfo', '-w', ','.join(warp_inverse) +
                ',-straight2templateAffine.txt,warp_straight2curve.nii.gz',
                '-d', 'data.nii', '-o', 'warp_template2anat.nii.gz'
            ], verbose)

    # register template->subject
    elif ref == 'subject':

        # Change orientation of input images to RPI
        sct.printv('\nChange orientation of input images to RPI...', verbose)
        sct.run([
            'sct_image', '-i', ftmp_data, '-setorient', 'RPI', '-o',
            add_suffix(ftmp_data, '_rpi')
        ])
        ftmp_data = add_suffix(ftmp_data, '_rpi')
        sct.run([
            'sct_image', '-i', ftmp_seg, '-setorient', 'RPI', '-o',
            add_suffix(ftmp_seg, '_rpi')
        ])
        ftmp_seg = add_suffix(ftmp_seg, '_rpi')
        sct.run([
            'sct_image', '-i', ftmp_label, '-setorient', 'RPI', '-o',
            add_suffix(ftmp_label, '_rpi')
        ])
        ftmp_label = add_suffix(ftmp_label, '_rpi')

        # Remove unused label on template. Keep only label present in the input label image
        sct.printv(
            '\nRemove unused label on template. Keep only label present in the input label image...',
            verbose)
        sct.run([
            'sct_label_utils', '-i', ftmp_template_label, '-o',
            ftmp_template_label, '-remove', ftmp_label
        ])

        # Add one label because at least 3 orthogonal labels are required to estimate an affine transformation. This
        # new label is added at the level of the upper most label (lowest value), at 1cm to the right.
        for i_file in [ftmp_label, ftmp_template_label]:
            im_label = Image(i_file)
            coord_label = im_label.getCoordinatesAveragedByValue(
            )  # N.B. landmarks are sorted by value
            # Create new label
            from copy import deepcopy
            new_label = deepcopy(coord_label[0])
            # move it 5mm to the left (orientation is RAS)
            nx, ny, nz, nt, px, py, pz, pt = im_label.dim
            new_label.x = round(coord_label[0].x + 5.0 / px)
            # assign value 99
            new_label.value = 99
            # Add to existing image
            im_label.data[int(new_label.x),
                          int(new_label.y),
                          int(new_label.z)] = new_label.value
            # Overwrite label file
            # im_label.setFileName('label_rpi_modif.nii.gz')
            im_label.save()

        # Bring template to subject space using landmark-based transformation
        sct.printv('\nEstimate transformation for step #0...', verbose)
        from msct_register_landmarks import register_landmarks
        warp_forward = ['template2subjectAffine.txt']
        warp_inverse = ['-template2subjectAffine.txt']
        try:
            register_landmarks(ftmp_template_label,
                               ftmp_label,
                               paramreg.steps['0'].dof,
                               fname_affine=warp_forward[0],
                               verbose=verbose,
                               path_qc="./")
        except Exception:
            sct.printv(
                'ERROR: input labels do not seem to be at the right place. Please check the position of the labels. See documentation for more details: https://sourceforge.net/p/spinalcordtoolbox/wiki/create_labels/',
                verbose=verbose,
                type='error')

        # loop across registration steps
        for i_step in range(1, len(paramreg.steps)):
            sct.printv(
                '\nEstimate transformation for step #' + str(i_step) + '...',
                verbose)
            # identify which is the src and dest
            if paramreg.steps[str(i_step)].type == 'im':
                src = ftmp_template
                dest = ftmp_data
                interp_step = 'linear'
            elif paramreg.steps[str(i_step)].type == 'seg':
                src = ftmp_template_seg
                dest = ftmp_seg
                interp_step = 'nn'
            else:
                sct.printv('ERROR: Wrong image type.', 1, 'error')
            # apply transformation from previous step, to use as new src for registration
            sct.run([
                'sct_apply_transfo', '-i', src, '-d', dest, '-w',
                ','.join(warp_forward), '-o',
                add_suffix(src,
                           '_regStep' + str(i_step - 1)), '-x', interp_step
            ], verbose)
            src = add_suffix(src, '_regStep' + str(i_step - 1))
            # register src --> dest
            # TODO: display param for debugging
            warp_forward_out, warp_inverse_out = register(
                src, dest, paramreg, param, str(i_step))
            warp_forward.append(warp_forward_out)
            warp_inverse.insert(0, warp_inverse_out)

        # Concatenate transformations:
        sct.printv('\nConcatenate transformations: template --> subject...',
                   verbose)
        sct.run([
            'sct_concat_transfo', '-w', ','.join(warp_forward), '-d',
            'data.nii', '-o', 'warp_template2anat.nii.gz'
        ], verbose)
        sct.printv('\nConcatenate transformations: subject --> template...',
                   verbose)
        sct.run([
            'sct_concat_transfo', '-w', ','.join(warp_inverse), '-d',
            'template.nii', '-o', 'warp_anat2template.nii.gz'
        ], verbose)

    # Apply warping fields to anat and template
    sct.run([
        'sct_apply_transfo', '-i', 'template.nii', '-o',
        'template2anat.nii.gz', '-d', 'data.nii', '-w',
        'warp_template2anat.nii.gz', '-crop', '1'
    ], verbose)
    sct.run([
        'sct_apply_transfo', '-i', 'data.nii', '-o', 'anat2template.nii.gz',
        '-d', 'template.nii', '-w', 'warp_anat2template.nii.gz', '-crop', '1'
    ], verbose)

    # come back
    os.chdir(curdir)

    # Generate output files
    sct.printv('\nGenerate output files...', verbose)
    fname_template2anat = os.path.join(path_output, 'template2anat' + ext_data)
    fname_anat2template = os.path.join(path_output, 'anat2template' + ext_data)
    sct.generate_output_file(
        os.path.join(path_tmp, "warp_template2anat.nii.gz"),
        os.path.join(path_output, "warp_template2anat.nii.gz"), verbose)
    sct.generate_output_file(
        os.path.join(path_tmp, "warp_anat2template.nii.gz"),
        os.path.join(path_output, "warp_anat2template.nii.gz"), verbose)
    sct.generate_output_file(os.path.join(path_tmp, "template2anat.nii.gz"),
                             fname_template2anat, verbose)
    sct.generate_output_file(os.path.join(path_tmp, "anat2template.nii.gz"),
                             fname_anat2template, verbose)
    if ref == 'template':
        # copy straightening files in case subsequent SCT functions need them
        sct.generate_output_file(
            os.path.join(path_tmp, "warp_curve2straight.nii.gz"),
            os.path.join(path_output, "warp_curve2straight.nii.gz"), verbose)
        sct.generate_output_file(
            os.path.join(path_tmp, "warp_straight2curve.nii.gz"),
            os.path.join(path_output, "warp_straight2curve.nii.gz"), verbose)
        sct.generate_output_file(
            os.path.join(path_tmp, "straight_ref.nii.gz"),
            os.path.join(path_output, "straight_ref.nii.gz"), verbose)

    # Delete temporary files
    if remove_temp_files:
        sct.printv('\nDelete temporary files...', verbose)
        sct.rmtree(path_tmp, verbose=verbose)

    # display elapsed time
    elapsed_time = time.time() - start_time
    sct.printv(
        '\nFinished! Elapsed time: ' + str(int(round(elapsed_time))) + 's',
        verbose)

    if param.path_qc is not None:
        generate_qc(fname_data, fname_template2anat, fname_seg, args,
                    os.path.abspath(param.path_qc))

    sct.display_viewer_syntax([fname_data, fname_template2anat],
                              verbose=verbose)
    sct.display_viewer_syntax([fname_template, fname_anat2template],
                              verbose=verbose)
def main(args=None):

    # initializations
    initz = ''
    initcenter = ''
    fname_initlabel = ''
    file_labelz = 'labelz.nii.gz'
    param = Param()

    # check user arguments
    if not args:
        args = sys.argv[1:]

    # Get parser info
    parser = get_parser()
    arguments = parser.parse(args)
    fname_in = os.path.abspath(arguments["-i"])
    fname_seg = os.path.abspath(arguments['-s'])
    contrast = arguments['-c']
    path_template = arguments['-t']
    scale_dist = arguments['-scale-dist']
    if '-ofolder' in arguments:
        path_output = arguments['-ofolder']
    else:
        path_output = os.curdir
    param.path_qc = arguments.get("-qc", None)
    if '-discfile' in arguments:
        fname_disc = os.path.abspath(arguments['-discfile'])
    else:
        fname_disc = None
    if '-initz' in arguments:
        initz = arguments['-initz']
    if '-initcenter' in arguments:
        initcenter = arguments['-initcenter']
    # if user provided text file, parse and overwrite arguments
    if '-initfile' in arguments:
        file = open(arguments['-initfile'], 'r')
        initfile = ' ' + file.read().replace('\n', '')
        arg_initfile = initfile.split(' ')
        for idx_arg, arg in enumerate(arg_initfile):
            if arg == '-initz':
                initz = [int(x) for x in arg_initfile[idx_arg + 1].split(',')]
            if arg == '-initcenter':
                initcenter = int(arg_initfile[idx_arg + 1])
    if '-initlabel' in arguments:
        # get absolute path of label
        fname_initlabel = os.path.abspath(arguments['-initlabel'])
    if '-param' in arguments:
        param.update(arguments['-param'][0])
    verbose = int(arguments.get('-v'))
    sct.init_sct(log_level=verbose, update=True)  # Update log level
    remove_temp_files = int(arguments['-r'])
    denoise = int(arguments['-denoise'])
    laplacian = int(arguments['-laplacian'])

    path_tmp = sct.tmp_create(basename="label_vertebrae", verbose=verbose)

    # Copying input data to tmp folder
    sct.printv('\nCopying input data to tmp folder...', verbose)
    Image(fname_in).save(os.path.join(path_tmp, "data.nii"))
    Image(fname_seg).save(os.path.join(path_tmp, "segmentation.nii"))

    # Go go temp folder
    curdir = os.getcwd()
    os.chdir(path_tmp)

    # Straighten spinal cord
    sct.printv('\nStraighten spinal cord...', verbose)
    # check if warp_curve2straight and warp_straight2curve already exist (i.e. no need to do it another time)
    cache_sig = sct.cache_signature(
     input_files=[fname_in, fname_seg],
    )
    cachefile = os.path.join(curdir, "straightening.cache")
    if sct.cache_valid(cachefile, cache_sig) and os.path.isfile(os.path.join(curdir, "warp_curve2straight.nii.gz")) and os.path.isfile(os.path.join(curdir, "warp_straight2curve.nii.gz")) and os.path.isfile(os.path.join(curdir, "straight_ref.nii.gz")):
        # if they exist, copy them into current folder
        sct.printv('Reusing existing warping field which seems to be valid', verbose, 'warning')
        sct.copy(os.path.join(curdir, "warp_curve2straight.nii.gz"), 'warp_curve2straight.nii.gz')
        sct.copy(os.path.join(curdir, "warp_straight2curve.nii.gz"), 'warp_straight2curve.nii.gz')
        sct.copy(os.path.join(curdir, "straight_ref.nii.gz"), 'straight_ref.nii.gz')
        # apply straightening
        s, o = sct.run(['sct_apply_transfo', '-i', 'data.nii', '-w', 'warp_curve2straight.nii.gz', '-d', 'straight_ref.nii.gz', '-o', 'data_straight.nii'])
    else:
        cmd = ['sct_straighten_spinalcord',
               '-i', 'data.nii',
               '-s', 'segmentation.nii',
               '-r', str(remove_temp_files)]
        if param.path_qc is not None and os.environ.get("SCT_RECURSIVE_QC", None) == "1":
            cmd += ['-qc', param.path_qc]
        s, o = sct.run(cmd)
        sct.cache_save(cachefile, cache_sig)

    # resample to 0.5mm isotropic to match template resolution
    sct.printv('\nResample to 0.5mm isotropic...', verbose)
    s, o = sct.run(['sct_resample', '-i', 'data_straight.nii', '-mm', '0.5x0.5x0.5', '-x', 'linear', '-o', 'data_straightr.nii'], verbose=verbose)

    # Apply straightening to segmentation
    # N.B. Output is RPI
    sct.printv('\nApply straightening to segmentation...', verbose)
    sct.run('isct_antsApplyTransforms -d 3 -i %s -r %s -t %s -o %s -n %s' %
            ('segmentation.nii',
             'data_straightr.nii',
             'warp_curve2straight.nii.gz',
             'segmentation_straight.nii',
             'Linear'),
            verbose=verbose,
            is_sct_binary=True,
           )
    # Threshold segmentation at 0.5
    sct.run(['sct_maths', '-i', 'segmentation_straight.nii', '-thr', '0.5', '-o', 'segmentation_straight.nii'], verbose)

    # If disc label file is provided, label vertebrae using that file instead of automatically
    if fname_disc:
        # Apply straightening to disc-label
        sct.printv('\nApply straightening to disc labels...', verbose)
        sct.run('isct_antsApplyTransforms -d 3 -i %s -r %s -t %s -o %s -n %s' %
                (fname_disc,
                 'data_straightr.nii',
                 'warp_curve2straight.nii.gz',
                 'labeldisc_straight.nii.gz',
                 'NearestNeighbor'),
                 verbose=verbose,
                 is_sct_binary=True,
                )
        label_vert('segmentation_straight.nii', 'labeldisc_straight.nii.gz', verbose=1)

    else:
        # create label to identify disc
        sct.printv('\nCreate label to identify disc...', verbose)
        fname_labelz = os.path.join(path_tmp, file_labelz)
        if initz or initcenter:
            if initcenter:
                # find z centered in FOV
                nii = Image('segmentation.nii').change_orientation("RPI")
                nx, ny, nz, nt, px, py, pz, pt = nii.dim  # Get dimensions
                z_center = int(np.round(nz / 2))  # get z_center
                initz = [z_center, initcenter]
            # create single label and output as labels.nii.gz
            label = ProcessLabels('segmentation.nii', fname_output='tmp.labelz.nii.gz',
                                      coordinates=['{},{}'.format(initz[0], initz[1])])
            im_label = label.process('create-seg')
            im_label.data = sct_maths.dilate(im_label.data, [3])  # TODO: create a dilation method specific to labels,
            # which does not apply a convolution across all voxels (highly inneficient)
            im_label.save(fname_labelz)
        elif fname_initlabel:
            import sct_label_utils
            # subtract "1" to label value because due to legacy, in this code the disc C2-C3 has value "2", whereas in the
            # recent version of SCT it is defined as "3". Therefore, when asking the user to define a label, we point to the
            # new definition of labels (i.e., C2-C3 = 3).
            sct_label_utils.main(['-i', fname_initlabel, '-add', '-1', '-o', fname_labelz])
        else:
            # automatically finds C2-C3 disc
            im_data = Image('data.nii')
            im_seg = Image('segmentation.nii')
            im_label_c2c3 = detect_c2c3(im_data, im_seg, contrast)
            ind_label = np.where(im_label_c2c3.data)
            if not np.size(ind_label) == 0:
                # subtract "1" to label value because due to legacy, in this code the disc C2-C3 has value "2", whereas in the
                # recent version of SCT it is defined as "3".
                im_label_c2c3.data[ind_label] = 2
            else:
                sct.printv('Automatic C2-C3 detection failed. Please provide manual label with sct_label_utils', 1, 'error')
            im_label_c2c3.save(fname_labelz)

        # dilate label so it is not lost when applying warping
        sct_maths.main(['-i', fname_labelz, '-dilate', '3', '-o', fname_labelz])

        # Apply straightening to z-label
        sct.printv('\nAnd apply straightening to label...', verbose)
        sct.run('isct_antsApplyTransforms -d 3 -i %s -r %s -t %s -o %s -n %s' %
                (file_labelz,
                 'data_straightr.nii',
                 'warp_curve2straight.nii.gz',
                 'labelz_straight.nii.gz',
                 'NearestNeighbor'),
                verbose=verbose,
                is_sct_binary=True,
               )
        # get z value and disk value to initialize labeling
        sct.printv('\nGet z and disc values from straight label...', verbose)
        init_disc = get_z_and_disc_values_from_label('labelz_straight.nii.gz')
        sct.printv('.. ' + str(init_disc), verbose)

        # denoise data
        if denoise:
            sct.printv('\nDenoise data...', verbose)
            sct.run(['sct_maths', '-i', 'data_straightr.nii', '-denoise', 'h=0.05', '-o', 'data_straightr.nii'], verbose)

        # apply laplacian filtering
        if laplacian:
            sct.printv('\nApply Laplacian filter...', verbose)
            sct.run(['sct_maths', '-i', 'data_straightr.nii', '-laplacian', '1', '-o', 'data_straightr.nii'], verbose)

        # detect vertebral levels on straight spinal cord
        vertebral_detection('data_straightr.nii', 'segmentation_straight.nii', contrast, param, init_disc=init_disc,
                            verbose=verbose, path_template=path_template, path_output=path_output, scale_dist=scale_dist)

    # un-straighten labeled spinal cord
    sct.printv('\nUn-straighten labeling...', verbose)
    sct.run('isct_antsApplyTransforms -d 3 -i %s -r %s -t %s -o %s -n %s' %
            ('segmentation_straight_labeled.nii',
             'segmentation.nii',
             'warp_straight2curve.nii.gz',
             'segmentation_labeled.nii',
             'NearestNeighbor'),
            verbose=verbose,
            is_sct_binary=True,
           )
    # Clean labeled segmentation
    sct.printv('\nClean labeled segmentation (correct interpolation errors)...', verbose)
    clean_labeled_segmentation('segmentation_labeled.nii', 'segmentation.nii', 'segmentation_labeled.nii')

    # label discs
    sct.printv('\nLabel discs...', verbose)
    label_discs('segmentation_labeled.nii', verbose=verbose)

    # come back
    os.chdir(curdir)

    # Generate output files
    path_seg, file_seg, ext_seg = sct.extract_fname(fname_seg)
    fname_seg_labeled = os.path.join(path_output, file_seg + '_labeled' + ext_seg)
    sct.printv('\nGenerate output files...', verbose)
    sct.generate_output_file(os.path.join(path_tmp, "segmentation_labeled.nii"), fname_seg_labeled)
    sct.generate_output_file(os.path.join(path_tmp, "segmentation_labeled_disc.nii"), os.path.join(path_output, file_seg + '_labeled_discs' + ext_seg))
    # copy straightening files in case subsequent SCT functions need them
    sct.generate_output_file(os.path.join(path_tmp, "warp_curve2straight.nii.gz"), os.path.join(path_output, "warp_curve2straight.nii.gz"), verbose)
    sct.generate_output_file(os.path.join(path_tmp, "warp_straight2curve.nii.gz"), os.path.join(path_output, "warp_straight2curve.nii.gz"), verbose)
    sct.generate_output_file(os.path.join(path_tmp, "straight_ref.nii.gz"), os.path.join(path_output, "straight_ref.nii.gz"), verbose)

    # Remove temporary files
    if remove_temp_files == 1:
        sct.printv('\nRemove temporary files...', verbose)
        sct.rmtree(path_tmp)

    # Generate QC report
    if param.path_qc is not None:
        path_qc = os.path.abspath(param.path_qc)
        qc_dataset = arguments.get("-qc-dataset", None)
        qc_subject = arguments.get("-qc-subject", None)
        labeled_seg_file = os.path.join(path_output, file_seg + '_labeled' + ext_seg)
        generate_qc(fname_in, fname_seg=labeled_seg_file, args=args, path_qc=os.path.abspath(path_qc),
                    dataset=qc_dataset, subject=qc_subject, process='sct_label_vertebrae')

    sct.display_viewer_syntax([fname_in, fname_seg_labeled], colormaps=['', 'subcortical'], opacities=['1', '0.5'])
Пример #6
0
def main(args=None):

    # initializations
    initz = ''
    initcenter = ''
    fname_initlabel = ''
    file_labelz = 'labelz.nii.gz'
    param = Param()

    # check user arguments
    if not args:
        args = sys.argv[1:]

    # Get parser info
    parser = get_parser()
    arguments = parser.parse(args)
    fname_in = os.path.abspath(arguments["-i"])
    fname_seg = os.path.abspath(arguments['-s'])
    contrast = arguments['-c']
    path_template = os.path.abspath(arguments['-t'])
    scale_dist = arguments['-scale-dist']
    if '-ofolder' in arguments:
        path_output = arguments['-ofolder']
    else:
        path_output = os.curdir
    param.path_qc = arguments.get("-qc", None)
    if '-discfile' in arguments:
        fname_disc = os.path.abspath(arguments['-discfile'])
    else:
        fname_disc = None
    if '-initz' in arguments:
        initz = arguments['-initz']
    if '-initcenter' in arguments:
        initcenter = arguments['-initcenter']
    # if user provided text file, parse and overwrite arguments
    if '-initfile' in arguments:
        file = open(arguments['-initfile'], 'r')
        initfile = ' ' + file.read().replace('\n', '')
        arg_initfile = initfile.split(' ')
        for idx_arg, arg in enumerate(arg_initfile):
            if arg == '-initz':
                initz = [int(x) for x in arg_initfile[idx_arg + 1].split(',')]
            if arg == '-initcenter':
                initcenter = int(arg_initfile[idx_arg + 1])
    if '-initlabel' in arguments:
        # get absolute path of label
        fname_initlabel = os.path.abspath(arguments['-initlabel'])
    if '-param' in arguments:
        param.update(arguments['-param'][0])
    verbose = int(arguments.get('-v'))
    sct.init_sct(log_level=verbose, update=True)  # Update log level
    remove_temp_files = int(arguments['-r'])
    denoise = int(arguments['-denoise'])
    laplacian = int(arguments['-laplacian'])

    path_tmp = sct.tmp_create(basename="label_vertebrae", verbose=verbose)

    # Copying input data to tmp folder
    sct.printv('\nCopying input data to tmp folder...', verbose)
    Image(fname_in).save(os.path.join(path_tmp, "data.nii"))
    Image(fname_seg).save(os.path.join(path_tmp, "segmentation.nii"))

    # Go go temp folder
    curdir = os.getcwd()
    os.chdir(path_tmp)

    # Straighten spinal cord
    sct.printv('\nStraighten spinal cord...', verbose)
    # check if warp_curve2straight and warp_straight2curve already exist (i.e. no need to do it another time)
    cache_sig = sct.cache_signature(input_files=[fname_in, fname_seg], )
    cachefile = os.path.join(curdir, "straightening.cache")
    if sct.cache_valid(cachefile, cache_sig) and os.path.isfile(
            os.path.join(
                curdir, "warp_curve2straight.nii.gz")) and os.path.isfile(
                    os.path.join(
                        curdir,
                        "warp_straight2curve.nii.gz")) and os.path.isfile(
                            os.path.join(curdir, "straight_ref.nii.gz")):
        # if they exist, copy them into current folder
        sct.printv('Reusing existing warping field which seems to be valid',
                   verbose, 'warning')
        sct.copy(os.path.join(curdir, "warp_curve2straight.nii.gz"),
                 'warp_curve2straight.nii.gz')
        sct.copy(os.path.join(curdir, "warp_straight2curve.nii.gz"),
                 'warp_straight2curve.nii.gz')
        sct.copy(os.path.join(curdir, "straight_ref.nii.gz"),
                 'straight_ref.nii.gz')
        # apply straightening
        s, o = sct.run([
            'sct_apply_transfo', '-i', 'data.nii', '-w',
            'warp_curve2straight.nii.gz', '-d', 'straight_ref.nii.gz', '-o',
            'data_straight.nii'
        ])
    else:
        sct_straighten_spinalcord.main(args=[
            '-i',
            'data.nii',
            '-s',
            'segmentation.nii',
            '-r',
            str(remove_temp_files),
            '-v',
            str(verbose),
        ])
        sct.cache_save(cachefile, cache_sig)

    # resample to 0.5mm isotropic to match template resolution
    sct.printv('\nResample to 0.5mm isotropic...', verbose)
    s, o = sct.run([
        'sct_resample', '-i', 'data_straight.nii', '-mm', '0.5x0.5x0.5', '-x',
        'linear', '-o', 'data_straightr.nii'
    ],
                   verbose=verbose)

    # Apply straightening to segmentation
    # N.B. Output is RPI
    sct.printv('\nApply straightening to segmentation...', verbose)
    sct.run(
        'isct_antsApplyTransforms -d 3 -i %s -r %s -t %s -o %s -n %s' %
        ('segmentation.nii', 'data_straightr.nii',
         'warp_curve2straight.nii.gz', 'segmentation_straight.nii', 'Linear'),
        verbose=verbose,
        is_sct_binary=True,
    )
    # Threshold segmentation at 0.5
    sct.run([
        'sct_maths', '-i', 'segmentation_straight.nii', '-thr', '0.5', '-o',
        'segmentation_straight.nii'
    ], verbose)

    # If disc label file is provided, label vertebrae using that file instead of automatically
    if fname_disc:
        # Apply straightening to disc-label
        sct.printv('\nApply straightening to disc labels...', verbose)
        sct.run(
            'isct_antsApplyTransforms -d 3 -i %s -r %s -t %s -o %s -n %s' %
            (fname_disc, 'data_straightr.nii', 'warp_curve2straight.nii.gz',
             'labeldisc_straight.nii.gz', 'NearestNeighbor'),
            verbose=verbose,
            is_sct_binary=True,
        )
        label_vert('segmentation_straight.nii',
                   'labeldisc_straight.nii.gz',
                   verbose=1)

    else:
        # create label to identify disc
        sct.printv('\nCreate label to identify disc...', verbose)
        fname_labelz = os.path.join(path_tmp, file_labelz)
        if initz or initcenter:
            if initcenter:
                # find z centered in FOV
                nii = Image('segmentation.nii').change_orientation("RPI")
                nx, ny, nz, nt, px, py, pz, pt = nii.dim  # Get dimensions
                z_center = int(np.round(nz / 2))  # get z_center
                initz = [z_center, initcenter]
            # create single label and output as labels.nii.gz
            label = ProcessLabels(
                'segmentation.nii',
                fname_output='tmp.labelz.nii.gz',
                coordinates=['{},{}'.format(initz[0], initz[1])])
            im_label = label.process('create-seg')
            im_label.data = dilate(
                im_label.data, 3,
                'ball')  # TODO: create a dilation method specific to labels,
            # which does not apply a convolution across all voxels (highly inneficient)
            im_label.save(fname_labelz)
        elif fname_initlabel:
            Image(fname_initlabel).save(fname_labelz)
        else:
            # automatically finds C2-C3 disc
            im_data = Image('data.nii')
            im_seg = Image('segmentation.nii')
            if not remove_temp_files:  # because verbose is here also used for keeping temp files
                verbose_detect_c2c3 = 2
            else:
                verbose_detect_c2c3 = 0
            im_label_c2c3 = detect_c2c3(im_data,
                                        im_seg,
                                        contrast,
                                        verbose=verbose_detect_c2c3)
            ind_label = np.where(im_label_c2c3.data)
            if not np.size(ind_label) == 0:
                im_label_c2c3.data[ind_label] = 3
            else:
                sct.printv(
                    'Automatic C2-C3 detection failed. Please provide manual label with sct_label_utils',
                    1, 'error')
                sys.exit()
            im_label_c2c3.save(fname_labelz)

        # dilate label so it is not lost when applying warping
        dilate(Image(fname_labelz), 3, 'ball').save(fname_labelz)

        # Apply straightening to z-label
        sct.printv('\nAnd apply straightening to label...', verbose)
        sct.run(
            'isct_antsApplyTransforms -d 3 -i %s -r %s -t %s -o %s -n %s' %
            (file_labelz, 'data_straightr.nii', 'warp_curve2straight.nii.gz',
             'labelz_straight.nii.gz', 'NearestNeighbor'),
            verbose=verbose,
            is_sct_binary=True,
        )
        # get z value and disk value to initialize labeling
        sct.printv('\nGet z and disc values from straight label...', verbose)
        init_disc = get_z_and_disc_values_from_label('labelz_straight.nii.gz')
        sct.printv('.. ' + str(init_disc), verbose)

        # denoise data
        if denoise:
            sct.printv('\nDenoise data...', verbose)
            sct.run([
                'sct_maths', '-i', 'data_straightr.nii', '-denoise', 'h=0.05',
                '-o', 'data_straightr.nii'
            ], verbose)

        # apply laplacian filtering
        if laplacian:
            sct.printv('\nApply Laplacian filter...', verbose)
            sct.run([
                'sct_maths', '-i', 'data_straightr.nii', '-laplacian', '1',
                '-o', 'data_straightr.nii'
            ], verbose)

        # detect vertebral levels on straight spinal cord
        init_disc[1] = init_disc[1] - 1
        vertebral_detection('data_straightr.nii',
                            'segmentation_straight.nii',
                            contrast,
                            param,
                            init_disc=init_disc,
                            verbose=verbose,
                            path_template=path_template,
                            path_output=path_output,
                            scale_dist=scale_dist)

    # un-straighten labeled spinal cord
    sct.printv('\nUn-straighten labeling...', verbose)
    sct.run(
        'isct_antsApplyTransforms -d 3 -i %s -r %s -t %s -o %s -n %s' %
        ('segmentation_straight_labeled.nii', 'segmentation.nii',
         'warp_straight2curve.nii.gz', 'segmentation_labeled.nii',
         'NearestNeighbor'),
        verbose=verbose,
        is_sct_binary=True,
    )
    # Clean labeled segmentation
    sct.printv(
        '\nClean labeled segmentation (correct interpolation errors)...',
        verbose)
    clean_labeled_segmentation('segmentation_labeled.nii', 'segmentation.nii',
                               'segmentation_labeled.nii')

    # label discs
    sct.printv('\nLabel discs...', verbose)
    label_discs('segmentation_labeled.nii', verbose=verbose)

    # come back
    os.chdir(curdir)

    # Generate output files
    path_seg, file_seg, ext_seg = sct.extract_fname(fname_seg)
    fname_seg_labeled = os.path.join(path_output,
                                     file_seg + '_labeled' + ext_seg)
    sct.printv('\nGenerate output files...', verbose)
    sct.generate_output_file(
        os.path.join(path_tmp, "segmentation_labeled.nii"), fname_seg_labeled)
    sct.generate_output_file(
        os.path.join(path_tmp, "segmentation_labeled_disc.nii"),
        os.path.join(path_output, file_seg + '_labeled_discs' + ext_seg))
    # copy straightening files in case subsequent SCT functions need them
    sct.generate_output_file(
        os.path.join(path_tmp, "warp_curve2straight.nii.gz"),
        os.path.join(path_output, "warp_curve2straight.nii.gz"), verbose)
    sct.generate_output_file(
        os.path.join(path_tmp, "warp_straight2curve.nii.gz"),
        os.path.join(path_output, "warp_straight2curve.nii.gz"), verbose)
    sct.generate_output_file(os.path.join(path_tmp, "straight_ref.nii.gz"),
                             os.path.join(path_output, "straight_ref.nii.gz"),
                             verbose)

    # Remove temporary files
    if remove_temp_files == 1:
        sct.printv('\nRemove temporary files...', verbose)
        sct.rmtree(path_tmp)

    # Generate QC report
    if param.path_qc is not None:
        path_qc = os.path.abspath(param.path_qc)
        qc_dataset = arguments.get("-qc-dataset", None)
        qc_subject = arguments.get("-qc-subject", None)
        labeled_seg_file = os.path.join(path_output,
                                        file_seg + '_labeled' + ext_seg)
        generate_qc(fname_in,
                    fname_seg=labeled_seg_file,
                    args=args,
                    path_qc=os.path.abspath(path_qc),
                    dataset=qc_dataset,
                    subject=qc_subject,
                    process='sct_label_vertebrae')

    sct.display_viewer_syntax([fname_in, fname_seg_labeled],
                              colormaps=['', 'subcortical'],
                              opacities=['1', '0.5'])
Пример #7
0
def main(args=None):

    # initializations
    initz = ''
    initcenter = ''
    initc2 = 'auto'
    fname_initlabel = ''
    file_labelz = 'labelz.nii.gz'
    param = Param()

    # check user arguments
    if not args:
        args = sys.argv[1:]

    # Get parser info
    parser = get_parser()
    arguments = parser.parse(args)
    fname_in = os.path.abspath(arguments["-i"])
    fname_seg = os.path.abspath(arguments['-s'])
    contrast = arguments['-c']
    path_template = arguments['-t']
    if '-ofolder' in arguments:
        path_output = arguments['-ofolder']
    else:
        path_output = os.curdir
    param.path_qc = arguments.get("-qc", None)

    if '-initz' in arguments:
        initz = arguments['-initz']
    if '-initcenter' in arguments:
        initcenter = arguments['-initcenter']
    # if user provided text file, parse and overwrite arguments
    if '-initfile' in arguments:
        file = open(arguments['-initfile'], 'r')
        initfile = ' ' + file.read().replace('\n', '')
        arg_initfile = initfile.split(' ')
        for idx_arg, arg in enumerate(arg_initfile):
            if arg == '-initz':
                initz = [int(x) for x in arg_initfile[idx_arg + 1].split(',')]
            if arg == '-initcenter':
                initcenter = int(arg_initfile[idx_arg + 1])
    if '-initlabel' in arguments:
        # get absolute path of label
        fname_initlabel = os.path.abspath(arguments['-initlabel'])
    if '-initc2' in arguments:
        initc2 = 'manual'
    if '-param' in arguments:
        param.update(arguments['-param'][0])
    verbose = int(arguments['-v'])
    remove_temp_files = int(arguments['-r'])
    denoise = int(arguments['-denoise'])
    laplacian = int(arguments['-laplacian'])

    path_tmp = sct.tmp_create(basename="label_vertebrae", verbose=verbose)

    # Copying input data to tmp folder
    sct.printv('\nCopying input data to tmp folder...', verbose)
    Image(fname_in).save(os.path.join(path_tmp, "data.nii"))
    Image(fname_seg).save(os.path.join(path_tmp, "segmentation.nii.gz"))

    # Go go temp folder
    curdir = os.getcwd()
    os.chdir(path_tmp)

    # create label to identify disc
    sct.printv('\nCreate label to identify disc...', verbose)
    fname_labelz = os.path.join(path_tmp, file_labelz)
    if initz:
        create_label_z(
            'segmentation.nii.gz',
            initz[0],
            initz[1],
            fname_labelz=fname_labelz)  # create label located at z_center
    elif initcenter:
        # find z centered in FOV
        nii = Image('segmentation.nii.gz').change_orientation("RPI")
        nx, ny, nz, nt, px, py, pz, pt = nii.dim  # Get dimensions
        z_center = int(np.round(nz / 2))  # get z_center
        create_label_z(
            'segmentation.nii.gz',
            z_center,
            initcenter,
            fname_labelz=fname_labelz)  # create label located at z_center
    elif fname_initlabel:
        import sct_label_utils
        # subtract "1" to label value because due to legacy, in this code the disc C2-C3 has value "2", whereas in the
        # recent version of SCT it is defined as "3". Therefore, when asking the user to define a label, we point to the
        # new definition of labels (i.e., C2-C3 = 3).
        sct_label_utils.main(
            ['-i', fname_initlabel, '-add', '-1', '-o', fname_labelz])
    else:
        # automatically finds C2-C3 disc
        im_data = Image('data.nii')
        im_seg = Image('segmentation.nii.gz')
        im_label_c2c3 = detect_c2c3(im_data, im_seg, contrast)
        ind_label = np.where(im_label_c2c3.data)
        if not np.size(ind_label) == 0:
            # subtract "1" to label value because due to legacy, in this code the disc C2-C3 has value "2", whereas in the
            # recent version of SCT it is defined as "3".
            im_label_c2c3.data[ind_label] = 2
        else:
            sct.printv(
                'Automatic C2-C3 detection failed. Please run the function with flag -initc2',
                1, 'error')
        im_label_c2c3.save(fname_labelz)

    # dilate label so it is not lost when applying warping
    sct_maths.main(['-i', fname_labelz, '-dilate', '3', '-o', fname_labelz])

    # Straighten spinal cord
    sct.printv('\nStraighten spinal cord...', verbose)
    # check if warp_curve2straight and warp_straight2curve already exist (i.e. no need to do it another time)
    cache_sig = sct.cache_signature(input_files=[fname_in, fname_seg], )
    cachefile = os.path.join(curdir, "straightening.cache")
    if sct.cache_valid(cachefile, cache_sig) and os.path.isfile(
            os.path.join(
                curdir, "warp_curve2straight.nii.gz")) and os.path.isfile(
                    os.path.join(
                        curdir,
                        "warp_straight2curve.nii.gz")) and os.path.isfile(
                            os.path.join(curdir, "straight_ref.nii.gz")):
        # if they exist, copy them into current folder
        sct.printv('Reusing existing warping field which seems to be valid',
                   verbose, 'warning')
        sct.copy(os.path.join(curdir, "warp_curve2straight.nii.gz"),
                 'warp_curve2straight.nii.gz')
        sct.copy(os.path.join(curdir, "warp_straight2curve.nii.gz"),
                 'warp_straight2curve.nii.gz')
        sct.copy(os.path.join(curdir, "straight_ref.nii.gz"),
                 'straight_ref.nii.gz')
        # apply straightening
        s, o = sct.run([
            'sct_apply_transfo', '-i', 'data.nii', '-w',
            'warp_curve2straight.nii.gz', '-d', 'straight_ref.nii.gz', '-o',
            'data_straight.nii'
        ])
    else:
        cmd = [
            'sct_straighten_spinalcord', '-i', 'data.nii', '-s',
            'segmentation.nii.gz', '-r',
            str(remove_temp_files)
        ]
        if param.path_qc is not None and os.environ.get(
                "SCT_RECURSIVE_QC", None) == "1":
            cmd += ['-qc', param.path_qc]
        s, o = sct.run(cmd)
        sct.cache_save(cachefile, cache_sig)

    # resample to 0.5mm isotropic to match template resolution
    sct.printv('\nResample to 0.5mm isotropic...', verbose)
    s, o = sct.run([
        'sct_resample', '-i', 'data_straight.nii', '-mm', '0.5x0.5x0.5', '-x',
        'linear', '-o', 'data_straightr.nii'
    ],
                   verbose=verbose)

    # Apply straightening to segmentation
    # N.B. Output is RPI
    sct.printv('\nApply straightening to segmentation...', verbose)
    s, o = sct.run([
        'sct_apply_transfo', '-i', 'segmentation.nii.gz', '-d',
        'data_straightr.nii', '-w', 'warp_curve2straight.nii.gz', '-o',
        'segmentation_straight.nii.gz', '-x', 'linear'
    ], verbose)
    # Threshold segmentation at 0.5
    sct.run([
        'sct_maths', '-i', 'segmentation_straight.nii.gz', '-thr', '0.5', '-o',
        'segmentation_straight.nii.gz'
    ], verbose)

    # Apply straightening to z-label
    sct.printv('\nAnd apply straightening to label...', verbose)
    sct.run([
        'sct_apply_transfo', '-i', file_labelz, '-d', 'data_straightr.nii',
        '-w', 'warp_curve2straight.nii.gz', '-o', 'labelz_straight.nii.gz',
        '-x', 'nn'
    ], verbose)
    # get z value and disk value to initialize labeling
    sct.printv('\nGet z and disc values from straight label...', verbose)
    init_disc = get_z_and_disc_values_from_label('labelz_straight.nii.gz')
    sct.printv('.. ' + str(init_disc), verbose)

    # denoise data
    if denoise:
        sct.printv('\nDenoise data...', verbose)
        sct.run([
            'sct_maths', '-i', 'data_straightr.nii', '-denoise', 'h=0.05',
            '-o', 'data_straightr.nii'
        ], verbose)

    # apply laplacian filtering
    if laplacian:
        sct.printv('\nApply Laplacian filter...', verbose)
        sct.run([
            'sct_maths', '-i', 'data_straightr.nii', '-laplacian', '1', '-o',
            'data_straightr.nii'
        ], verbose)

    # detect vertebral levels on straight spinal cord
    vertebral_detection('data_straightr.nii',
                        'segmentation_straight.nii.gz',
                        contrast,
                        param,
                        init_disc=init_disc,
                        verbose=verbose,
                        path_template=path_template,
                        initc2=initc2,
                        path_output=path_output)

    # un-straighten labeled spinal cord
    sct.printv('\nUn-straighten labeling...', verbose)
    sct.run([
        'sct_apply_transfo', '-i', 'segmentation_straight_labeled.nii.gz',
        '-d', 'segmentation.nii.gz', '-w', 'warp_straight2curve.nii.gz', '-o',
        'segmentation_labeled.nii.gz', '-x', 'nn'
    ], verbose)

    # Clean labeled segmentation
    sct.printv(
        '\nClean labeled segmentation (correct interpolation errors)...',
        verbose)
    clean_labeled_segmentation('segmentation_labeled.nii.gz',
                               'segmentation.nii.gz',
                               'segmentation_labeled.nii.gz')

    # label discs
    sct.printv('\nLabel discs...', verbose)
    label_discs('segmentation_labeled.nii.gz', verbose=verbose)

    # come back
    os.chdir(curdir)

    # Generate output files
    path_seg, file_seg, ext_seg = sct.extract_fname(fname_seg)
    fname_seg_labeled = os.path.join(path_output,
                                     file_seg + '_labeled' + ext_seg)
    sct.printv('\nGenerate output files...', verbose)
    sct.generate_output_file(
        os.path.join(path_tmp, "segmentation_labeled.nii.gz"),
        fname_seg_labeled)
    sct.generate_output_file(
        os.path.join(path_tmp, "segmentation_labeled_disc.nii.gz"),
        os.path.join(path_output, file_seg + '_labeled_discs' + ext_seg))
    # copy straightening files in case subsequent SCT functions need them
    sct.generate_output_file(
        os.path.join(path_tmp, "warp_curve2straight.nii.gz"),
        os.path.join(path_output, "warp_curve2straight.nii.gz"), verbose)
    sct.generate_output_file(
        os.path.join(path_tmp, "warp_straight2curve.nii.gz"),
        os.path.join(path_output, "warp_straight2curve.nii.gz"), verbose)
    sct.generate_output_file(os.path.join(path_tmp, "straight_ref.nii.gz"),
                             os.path.join(path_output, "straight_ref.nii.gz"),
                             verbose)

    # Remove temporary files
    if remove_temp_files == 1:
        sct.printv('\nRemove temporary files...', verbose)
        sct.rmtree(path_tmp)

    # Generate QC report
    if param.path_qc is not None:
        path_qc = os.path.abspath(param.path_qc)
        labeled_seg_file = os.path.join(path_output,
                                        file_seg + '_labeled' + ext_seg)
        generate_qc(fname_in, labeled_seg_file, args, path_qc)

    sct.display_viewer_syntax([fname_in, fname_seg_labeled],
                              colormaps=['', 'subcortical'],
                              opacities=['1', '0.5'])
def main(args=None):

    # initializations
    param = Param()

    # check user arguments
    if not args:
        args = sys.argv[1:]

    # Get parser info
    parser = get_parser()
    arguments = parser.parse(args)
    fname_data = arguments['-i']
    fname_seg = arguments['-s']
    if '-l' in arguments:
        fname_landmarks = arguments['-l']
        label_type = 'body'
    elif '-ldisc' in arguments:
        fname_landmarks = arguments['-ldisc']
        label_type = 'disc'
    else:
        sct.printv('ERROR: Labels should be provided.', 1, 'error')
    if '-ofolder' in arguments:
        path_output = arguments['-ofolder']
    else:
        path_output = ''

    param.path_qc = arguments.get("-qc", None)

    path_template = arguments['-t']
    contrast_template = arguments['-c']
    ref = arguments['-ref']
    param.remove_temp_files = int(arguments.get('-r'))
    verbose = int(arguments.get('-v'))
    sct.init_sct(log_level=verbose, update=True)  # Update log level
    param.verbose = verbose  # TODO: not clean, unify verbose or param.verbose in code, but not both
    param.straighten_fitting = arguments['-straighten-fitting']
    # if '-cpu-nb' in arguments:
    #     arg_cpu = ' -cpu-nb '+str(arguments['-cpu-nb'])
    # else:
    #     arg_cpu = ''
    # registration parameters
    if '-param' in arguments:
        # reset parameters but keep step=0 (might be overwritten if user specified step=0)
        paramreg = ParamregMultiStep([step0])
        if ref == 'subject':
            paramreg.steps['0'].dof = 'Tx_Ty_Tz_Rx_Ry_Rz_Sz'
        # add user parameters
        for paramStep in arguments['-param']:
            paramreg.addStep(paramStep)
    else:
        paramreg = ParamregMultiStep([step0, step1, step2])
        # if ref=subject, initialize registration using different affine parameters
        if ref == 'subject':
            paramreg.steps['0'].dof = 'Tx_Ty_Tz_Rx_Ry_Rz_Sz'

    # initialize other parameters
    zsubsample = param.zsubsample

    # retrieve template file names
    file_template_vertebral_labeling = get_file_label(os.path.join(path_template, 'template'), 'vertebral labeling')
    file_template = get_file_label(os.path.join(path_template, 'template'), contrast_template.upper() + '-weighted template')
    file_template_seg = get_file_label(os.path.join(path_template, 'template'), 'spinal cord')

    # start timer
    start_time = time.time()

    # get fname of the template + template objects
    fname_template = os.path.join(path_template, 'template', file_template)
    fname_template_vertebral_labeling = os.path.join(path_template, 'template', file_template_vertebral_labeling)
    fname_template_seg = os.path.join(path_template, 'template', file_template_seg)
    fname_template_disc_labeling = os.path.join(path_template, 'template', 'PAM50_label_disc.nii.gz')

    # check file existence
    # TODO: no need to do that!
    sct.printv('\nCheck template files...')
    sct.check_file_exist(fname_template, verbose)
    sct.check_file_exist(fname_template_vertebral_labeling, verbose)
    sct.check_file_exist(fname_template_seg, verbose)
    path_data, file_data, ext_data = sct.extract_fname(fname_data)

    # sct.printv(arguments)
    sct.printv('\nCheck parameters:', verbose)
    sct.printv('  Data:                 ' + fname_data, verbose)
    sct.printv('  Landmarks:            ' + fname_landmarks, verbose)
    sct.printv('  Segmentation:         ' + fname_seg, verbose)
    sct.printv('  Path template:        ' + path_template, verbose)
    sct.printv('  Remove temp files:    ' + str(param.remove_temp_files), verbose)

    # check input labels
    labels = check_labels(fname_landmarks, label_type=label_type)

    vertebral_alignment = False
    if len(labels) > 2 and label_type == 'disc':
        vertebral_alignment = True

    path_tmp = sct.tmp_create(basename="register_to_template", verbose=verbose)

    # set temporary file names
    ftmp_data = 'data.nii'
    ftmp_seg = 'seg.nii.gz'
    ftmp_label = 'label.nii.gz'
    ftmp_template = 'template.nii'
    ftmp_template_seg = 'template_seg.nii.gz'
    ftmp_template_label = 'template_label.nii.gz'

    # copy files to temporary folder
    sct.printv('\nCopying input data to tmp folder and convert to nii...', verbose)
    Image(fname_data).save(os.path.join(path_tmp, ftmp_data))
    Image(fname_seg).save(os.path.join(path_tmp, ftmp_seg))
    Image(fname_landmarks).save(os.path.join(path_tmp, ftmp_label))
    Image(fname_template).save(os.path.join(path_tmp, ftmp_template))
    Image(fname_template_seg).save(os.path.join(path_tmp, ftmp_template_seg))
    Image(fname_template_vertebral_labeling).save(os.path.join(path_tmp, ftmp_template_label))
    if label_type == 'disc':
        Image(fname_template_disc_labeling).save(os.path.join(path_tmp, ftmp_template_label))

    # go to tmp folder
    curdir = os.getcwd()
    os.chdir(path_tmp)

    # Generate labels from template vertebral labeling
    if label_type == 'body':
        sct.printv('\nGenerate labels from template vertebral labeling', verbose)
        ftmp_template_label_, ftmp_template_label = ftmp_template_label, sct.add_suffix(ftmp_template_label, "_body")
        sct_label_utils.main(args=['-i', ftmp_template_label_, '-vert-body', '0', '-o', ftmp_template_label])

    # check if provided labels are available in the template
    sct.printv('\nCheck if provided labels are available in the template', verbose)
    image_label_template = Image(ftmp_template_label)
    labels_template = image_label_template.getNonZeroCoordinates(sorting='value')
    if labels[-1].value > labels_template[-1].value:
        sct.printv('ERROR: Wrong landmarks input. Labels must have correspondence in template space. \nLabel max '
                   'provided: ' + str(labels[-1].value) + '\nLabel max from template: ' +
                   str(labels_template[-1].value), verbose, 'error')

    # if only one label is present, force affine transformation to be Tx,Ty,Tz only (no scaling)
    if len(labels) == 1:
        paramreg.steps['0'].dof = 'Tx_Ty_Tz'
        sct.printv('WARNING: Only one label is present. Forcing initial transformation to: ' + paramreg.steps['0'].dof,
                   1, 'warning')

    # Project labels onto the spinal cord centerline because later, an affine transformation is estimated between the
    # template's labels (centered in the cord) and the subject's labels (assumed to be centered in the cord).
    # If labels are not centered, mis-registration errors are observed (see issue #1826)
    ftmp_label = project_labels_on_spinalcord(ftmp_label, ftmp_seg)

    # binarize segmentation (in case it has values below 0 caused by manual editing)
    sct.printv('\nBinarize segmentation', verbose)
    ftmp_seg_, ftmp_seg = ftmp_seg, sct.add_suffix(ftmp_seg, "_bin")
    sct_maths.main(['-i', ftmp_seg_,
                    '-bin', '0.5',
                    '-o', ftmp_seg])

    # Switch between modes: subject->template or template->subject
    if ref == 'template':

        # resample data to 1mm isotropic
        sct.printv('\nResample data to 1mm isotropic...', verbose)
        resample_file(ftmp_data, add_suffix(ftmp_data, '_1mm'), '1.0x1.0x1.0', 'mm', 'linear', verbose)
        ftmp_data = add_suffix(ftmp_data, '_1mm')
        resample_file(ftmp_seg, add_suffix(ftmp_seg, '_1mm'), '1.0x1.0x1.0', 'mm', 'linear', verbose)
        ftmp_seg = add_suffix(ftmp_seg, '_1mm')
        # N.B. resampling of labels is more complicated, because they are single-point labels, therefore resampling
        # with nearest neighbour can make them disappear.
        resample_labels(ftmp_label, ftmp_data, add_suffix(ftmp_label, '_1mm'))
        ftmp_label = add_suffix(ftmp_label, '_1mm')

        # Change orientation of input images to RPI
        sct.printv('\nChange orientation of input images to RPI...', verbose)

        ftmp_data = Image(ftmp_data).change_orientation("RPI", generate_path=True).save().absolutepath
        ftmp_seg = Image(ftmp_seg).change_orientation("RPI", generate_path=True).save().absolutepath
        ftmp_label = Image(ftmp_label).change_orientation("RPI", generate_path=True).save().absolutepath


        ftmp_seg_, ftmp_seg = ftmp_seg, add_suffix(ftmp_seg, '_crop')
        if vertebral_alignment:
            # cropping the segmentation based on the label coverage to ensure good registration with vertebral alignment
            # See https://github.com/neuropoly/spinalcordtoolbox/pull/1669 for details
            image_labels = Image(ftmp_label)
            coordinates_labels = image_labels.getNonZeroCoordinates(sorting='z')
            nx, ny, nz, nt, px, py, pz, pt = image_labels.dim
            offset_crop = 10.0 * pz  # cropping the image 10 mm above and below the highest and lowest label
            cropping_slices = [coordinates_labels[0].z - offset_crop, coordinates_labels[-1].z + offset_crop]
            # make sure that the cropping slices do not extend outside of the slice range (issue #1811)
            if cropping_slices[0] < 0:
                cropping_slices[0] = 0
            if cropping_slices[1] > nz:
                cropping_slices[1] = nz
            msct_image.spatial_crop(Image(ftmp_seg_), dict(((2, np.int32(np.round(cropping_slices))),))).save(ftmp_seg)
        else:
            # if we do not align the vertebral levels, we crop the segmentation from top to bottom
            im_seg_rpi = Image(ftmp_seg_)
            bottom = 0
            for data in msct_image.SlicerOneAxis(im_seg_rpi, "IS"):
                if (data != 0).any():
                    break
                bottom += 1
            top = im_seg_rpi.data.shape[2]
            for data in msct_image.SlicerOneAxis(im_seg_rpi, "SI"):
                if (data != 0).any():
                    break
                top -= 1
            msct_image.spatial_crop(im_seg_rpi, dict(((2, (bottom, top)),))).save(ftmp_seg)


        # straighten segmentation
        sct.printv('\nStraighten the spinal cord using centerline/segmentation...', verbose)

        # check if warp_curve2straight and warp_straight2curve already exist (i.e. no need to do it another time)
        fn_warp_curve2straight = os.path.join(curdir, "warp_curve2straight.nii.gz")
        fn_warp_straight2curve = os.path.join(curdir, "warp_straight2curve.nii.gz")
        fn_straight_ref = os.path.join(curdir, "straight_ref.nii.gz")

        cache_input_files=[ftmp_seg]
        if vertebral_alignment:
            cache_input_files += [
             ftmp_template_seg,
             ftmp_label,
             ftmp_template_label,
            ]
        cache_sig = sct.cache_signature(
         input_files=cache_input_files,
        )
        cachefile = os.path.join(curdir, "straightening.cache")
        if sct.cache_valid(cachefile, cache_sig) and os.path.isfile(fn_warp_curve2straight) and os.path.isfile(fn_warp_straight2curve) and os.path.isfile(fn_straight_ref):
            sct.printv('Reusing existing warping field which seems to be valid', verbose, 'warning')
            sct.copy(fn_warp_curve2straight, 'warp_curve2straight.nii.gz')
            sct.copy(fn_warp_straight2curve, 'warp_straight2curve.nii.gz')
            sct.copy(fn_straight_ref, 'straight_ref.nii.gz')
            # apply straightening
            sct.run(['sct_apply_transfo', '-i', ftmp_seg, '-w', 'warp_curve2straight.nii.gz', '-d', 'straight_ref.nii.gz', '-o', add_suffix(ftmp_seg, '_straight')])
        else:
            from spinalcordtoolbox.straightening import SpinalCordStraightener
            sc_straight = SpinalCordStraightener(ftmp_seg, ftmp_seg)
            sc_straight.algo_fitting = param.straighten_fitting
            sc_straight.output_filename = add_suffix(ftmp_seg, '_straight')
            sc_straight.path_output = './'
            sc_straight.qc = '0'
            sc_straight.remove_temp_files = param.remove_temp_files
            sc_straight.verbose = verbose

            if vertebral_alignment:
                sc_straight.centerline_reference_filename = ftmp_template_seg
                sc_straight.use_straight_reference = True
                sc_straight.discs_input_filename = ftmp_label
                sc_straight.discs_ref_filename = ftmp_template_label

            sc_straight.straighten()
            sct.cache_save(cachefile, cache_sig)

        # N.B. DO NOT UPDATE VARIABLE ftmp_seg BECAUSE TEMPORARY USED LATER
        # re-define warping field using non-cropped space (to avoid issue #367)
        s, o = sct.run(['sct_concat_transfo', '-w', 'warp_straight2curve.nii.gz', '-d', ftmp_data, '-o', 'warp_straight2curve.nii.gz'])

        if vertebral_alignment:
            sct.copy('warp_curve2straight.nii.gz', 'warp_curve2straightAffine.nii.gz')
        else:
            # Label preparation:
            # --------------------------------------------------------------------------------
            # Remove unused label on template. Keep only label present in the input label image
            sct.printv('\nRemove unused label on template. Keep only label present in the input label image...', verbose)
            sct.run(['sct_label_utils', '-i', ftmp_template_label, '-o', ftmp_template_label, '-remove-reference', ftmp_label])

            # Dilating the input label so they can be straighten without losing them
            sct.printv('\nDilating input labels using 3vox ball radius')
            sct_maths.main(['-i', ftmp_label,
                            '-dilate', '3',
                            '-o', add_suffix(ftmp_label, '_dilate')])
            ftmp_label = add_suffix(ftmp_label, '_dilate')

            # Apply straightening to labels
            sct.printv('\nApply straightening to labels...', verbose)
            sct.run(['sct_apply_transfo', '-i', ftmp_label, '-o', add_suffix(ftmp_label, '_straight'), '-d', add_suffix(ftmp_seg, '_straight'), '-w', 'warp_curve2straight.nii.gz', '-x', 'nn'])
            ftmp_label = add_suffix(ftmp_label, '_straight')

            # Compute rigid transformation straight landmarks --> template landmarks
            sct.printv('\nEstimate transformation for step #0...', verbose)
            try:
                register_landmarks(ftmp_label, ftmp_template_label, paramreg.steps['0'].dof,
                                   fname_affine='straight2templateAffine.txt', verbose=verbose)
            except RuntimeError:
                raise('Input labels do not seem to be at the right place. Please check the position of the labels. '
                      'See documentation for more details: https://www.slideshare.net/neuropoly/sct-course-20190121/42')

            # Concatenate transformations: curve --> straight --> affine
            sct.printv('\nConcatenate transformations: curve --> straight --> affine...', verbose)
            sct.run(['sct_concat_transfo', '-w', 'warp_curve2straight.nii.gz,straight2templateAffine.txt', '-d', 'template.nii', '-o', 'warp_curve2straightAffine.nii.gz'])

        # Apply transformation
        sct.printv('\nApply transformation...', verbose)
        sct.run(['sct_apply_transfo', '-i', ftmp_data, '-o', add_suffix(ftmp_data, '_straightAffine'), '-d', ftmp_template, '-w', 'warp_curve2straightAffine.nii.gz'])
        ftmp_data = add_suffix(ftmp_data, '_straightAffine')
        sct.run(['sct_apply_transfo', '-i', ftmp_seg, '-o', add_suffix(ftmp_seg, '_straightAffine'), '-d', ftmp_template, '-w', 'warp_curve2straightAffine.nii.gz', '-x', 'linear'])
        ftmp_seg = add_suffix(ftmp_seg, '_straightAffine')

        """
        # Benjamin: Issue from Allan Martin, about the z=0 slice that is screwed up, caused by the affine transform.
        # Solution found: remove slices below and above landmarks to avoid rotation effects
        points_straight = []
        for coord in landmark_template:
            points_straight.append(coord.z)
        min_point, max_point = int(np.round(np.min(points_straight))), int(np.round(np.max(points_straight)))
        ftmp_seg_, ftmp_seg = ftmp_seg, add_suffix(ftmp_seg, '_black')
        msct_image.spatial_crop(Image(ftmp_seg_), dict(((2, (min_point,max_point)),))).save(ftmp_seg)

        """
        # open segmentation
        im = Image(ftmp_seg)
        im_new = msct_image.empty_like(im)
        # binarize
        im_new.data = im.data > 0.5
        # find min-max of anat2template (for subsequent cropping)
        zmin_template, zmax_template = msct_image.find_zmin_zmax(im_new, threshold=0.5)
        # save binarized segmentation
        im_new.save(add_suffix(ftmp_seg, '_bin')) # unused?
        # crop template in z-direction (for faster processing)
        # TODO: refactor to use python module instead of doing i/o
        sct.printv('\nCrop data in template space (for faster processing)...', verbose)
        ftmp_template_, ftmp_template = ftmp_template, add_suffix(ftmp_template, '_crop')
        msct_image.spatial_crop(Image(ftmp_template_), dict(((2, (zmin_template,zmax_template)),))).save(ftmp_template)

        ftmp_template_seg_, ftmp_template_seg = ftmp_template_seg, add_suffix(ftmp_template_seg, '_crop')
        msct_image.spatial_crop(Image(ftmp_template_seg_), dict(((2, (zmin_template,zmax_template)),))).save(ftmp_template_seg)

        ftmp_data_, ftmp_data = ftmp_data, add_suffix(ftmp_data, '_crop')
        msct_image.spatial_crop(Image(ftmp_data_), dict(((2, (zmin_template,zmax_template)),))).save(ftmp_data)

        ftmp_seg_, ftmp_seg = ftmp_seg, add_suffix(ftmp_seg, '_crop')
        msct_image.spatial_crop(Image(ftmp_seg_), dict(((2, (zmin_template,zmax_template)),))).save(ftmp_seg)

        # sub-sample in z-direction
        # TODO: refactor to use python module instead of doing i/o
        sct.printv('\nSub-sample in z-direction (for faster processing)...', verbose)
        sct.run(['sct_resample', '-i', ftmp_template, '-o', add_suffix(ftmp_template, '_sub'), '-f', '1x1x' + zsubsample], verbose)
        ftmp_template = add_suffix(ftmp_template, '_sub')
        sct.run(['sct_resample', '-i', ftmp_template_seg, '-o', add_suffix(ftmp_template_seg, '_sub'), '-f', '1x1x' + zsubsample], verbose)
        ftmp_template_seg = add_suffix(ftmp_template_seg, '_sub')
        sct.run(['sct_resample', '-i', ftmp_data, '-o', add_suffix(ftmp_data, '_sub'), '-f', '1x1x' + zsubsample], verbose)
        ftmp_data = add_suffix(ftmp_data, '_sub')
        sct.run(['sct_resample', '-i', ftmp_seg, '-o', add_suffix(ftmp_seg, '_sub'), '-f', '1x1x' + zsubsample], verbose)
        ftmp_seg = add_suffix(ftmp_seg, '_sub')

        # Registration straight spinal cord to template
        sct.printv('\nRegister straight spinal cord to template...', verbose)

        # loop across registration steps
        warp_forward = []
        warp_inverse = []
        for i_step in range(1, len(paramreg.steps)):
            sct.printv('\nEstimate transformation for step #' + str(i_step) + '...', verbose)
            # identify which is the src and dest
            if paramreg.steps[str(i_step)].type == 'im':
                src = ftmp_data
                dest = ftmp_template
                interp_step = 'linear'
            elif paramreg.steps[str(i_step)].type == 'seg':
                src = ftmp_seg
                dest = ftmp_template_seg
                interp_step = 'nn'
            else:
                sct.printv('ERROR: Wrong image type.', 1, 'error')

            if paramreg.steps[str(i_step)].algo == 'centermassrot' and paramreg.steps[str(i_step)].rot_method == 'hog':
                src_seg = ftmp_seg
                dest_seg = ftmp_template_seg
            # if step>1, apply warp_forward_concat to the src image to be used
            if i_step > 1:
                # apply transformation from previous step, to use as new src for registration
                sct.run(['sct_apply_transfo', '-i', src, '-d', dest, '-w', ','.join(warp_forward), '-o', add_suffix(src, '_regStep' + str(i_step - 1)), '-x', interp_step], verbose)
                src = add_suffix(src, '_regStep' + str(i_step - 1))
                if paramreg.steps[str(i_step)].algo == 'centermassrot' and paramreg.steps[str(i_step)].rot_method == 'hog':  # also apply transformation to the seg
                    sct.run(['sct_apply_transfo', '-i', src_seg, '-d', dest_seg, '-w', ','.join(warp_forward), '-o', add_suffix(src, '_regStep' + str(i_step - 1)), '-x', interp_step], verbose)
                    src_seg = add_suffix(src_seg, '_regStep' + str(i_step - 1))
            # register src --> dest
            # TODO: display param for debugging
            if paramreg.steps[str(i_step)].algo == 'centermassrot' and paramreg.steps[str(i_step)].rot_method == 'hog': # im_seg case
                warp_forward_out, warp_inverse_out = register([src, src_seg], [dest, dest_seg], paramreg, param, str(i_step))
            else:
                warp_forward_out, warp_inverse_out = register(src, dest, paramreg, param, str(i_step))
            warp_forward.append(warp_forward_out)
            warp_inverse.append(warp_inverse_out)

        # Concatenate transformations:
        sct.printv('\nConcatenate transformations: anat --> template...', verbose)
        sct.run(['sct_concat_transfo', '-w', 'warp_curve2straightAffine.nii.gz,' + ','.join(warp_forward), '-d', 'template.nii', '-o', 'warp_anat2template.nii.gz'], verbose)
        # sct.run('sct_concat_transfo -w warp_curve2straight.nii.gz,straight2templateAffine.txt,'+','.join(warp_forward)+' -d template.nii -o warp_anat2template.nii.gz', verbose)
        sct.printv('\nConcatenate transformations: template --> anat...', verbose)
        warp_inverse.reverse()

        if vertebral_alignment:
            sct.run(['sct_concat_transfo', '-w', ','.join(warp_inverse) + ',warp_straight2curve.nii.gz', '-d', 'data.nii', '-o', 'warp_template2anat.nii.gz'], verbose)
        else:
            sct.run(['sct_concat_transfo', '-w', ','.join(warp_inverse) + ',-straight2templateAffine.txt,warp_straight2curve.nii.gz', '-d', 'data.nii', '-o', 'warp_template2anat.nii.gz'], verbose)

    # register template->subject
    elif ref == 'subject':

        # Change orientation of input images to RPI
        sct.printv('\nChange orientation of input images to RPI...', verbose)
        ftmp_data = Image(ftmp_data).change_orientation("RPI", generate_path=True).save().absolutepath
        ftmp_seg = Image(ftmp_seg).change_orientation("RPI", generate_path=True).save().absolutepath
        ftmp_label = Image(ftmp_label).change_orientation("RPI", generate_path=True).save().absolutepath

        # Remove unused label on template. Keep only label present in the input label image
        sct.printv('\nRemove unused label on template. Keep only label present in the input label image...', verbose)
        sct.run(['sct_label_utils', '-i', ftmp_template_label, '-o', ftmp_template_label, '-remove-reference', ftmp_label])

        # Add one label because at least 3 orthogonal labels are required to estimate an affine transformation. This
        # new label is added at the level of the upper most label (lowest value), at 1cm to the right.
        for i_file in [ftmp_label, ftmp_template_label]:
            im_label = Image(i_file)
            coord_label = im_label.getCoordinatesAveragedByValue()  # N.B. landmarks are sorted by value
            # Create new label
            from copy import deepcopy
            new_label = deepcopy(coord_label[0])
            # move it 5mm to the left (orientation is RAS)
            nx, ny, nz, nt, px, py, pz, pt = im_label.dim
            new_label.x = np.round(coord_label[0].x + 5.0 / px)
            # assign value 99
            new_label.value = 99
            # Add to existing image
            im_label.data[int(new_label.x), int(new_label.y), int(new_label.z)] = new_label.value
            # Overwrite label file
            # im_label.absolutepath = 'label_rpi_modif.nii.gz'
            im_label.save()

        # Bring template to subject space using landmark-based transformation
        sct.printv('\nEstimate transformation for step #0...', verbose)
        warp_forward = ['template2subjectAffine.txt']
        warp_inverse = ['-template2subjectAffine.txt']
        try:
            register_landmarks(ftmp_template_label, ftmp_label, paramreg.steps['0'].dof, fname_affine=warp_forward[0], verbose=verbose, path_qc="./")
        except Exception:
            sct.printv('ERROR: input labels do not seem to be at the right place. Please check the position of the labels. See documentation for more details: https://www.slideshare.net/neuropoly/sct-course-20190121/42', verbose=verbose, type='error')

        # loop across registration steps
        for i_step in range(1, len(paramreg.steps)):
            sct.printv('\nEstimate transformation for step #' + str(i_step) + '...', verbose)
            # identify which is the src and dest
            if paramreg.steps[str(i_step)].type == 'im':
                src = ftmp_template
                dest = ftmp_data
                interp_step = 'linear'
            elif paramreg.steps[str(i_step)].type == 'seg':
                src = ftmp_template_seg
                dest = ftmp_seg
                interp_step = 'nn'
            else:
                sct.printv('ERROR: Wrong image type.', 1, 'error')
            # apply transformation from previous step, to use as new src for registration
            sct.run(['sct_apply_transfo', '-i', src, '-d', dest, '-w', ','.join(warp_forward), '-o', add_suffix(src, '_regStep' + str(i_step - 1)), '-x', interp_step], verbose)
            src = add_suffix(src, '_regStep' + str(i_step - 1))
            # register src --> dest
            # TODO: display param for debugging
            warp_forward_out, warp_inverse_out = register(src, dest, paramreg, param, str(i_step))
            warp_forward.append(warp_forward_out)
            warp_inverse.insert(0, warp_inverse_out)

        # Concatenate transformations:
        sct.printv('\nConcatenate transformations: template --> subject...', verbose)
        sct.run(['sct_concat_transfo', '-w', ','.join(warp_forward), '-d', 'data.nii', '-o', 'warp_template2anat.nii.gz'], verbose)
        sct.printv('\nConcatenate transformations: subject --> template...', verbose)
        sct.run(['sct_concat_transfo', '-w', ','.join(warp_inverse), '-d', 'template.nii', '-o', 'warp_anat2template.nii.gz'], verbose)

    # Apply warping fields to anat and template
    sct.run(['sct_apply_transfo', '-i', 'template.nii', '-o', 'template2anat.nii.gz', '-d', 'data.nii', '-w', 'warp_template2anat.nii.gz', '-crop', '1'], verbose)
    sct.run(['sct_apply_transfo', '-i', 'data.nii', '-o', 'anat2template.nii.gz', '-d', 'template.nii', '-w', 'warp_anat2template.nii.gz', '-crop', '1'], verbose)

    # come back
    os.chdir(curdir)

    # Generate output files
    sct.printv('\nGenerate output files...', verbose)
    fname_template2anat = os.path.join(path_output, 'template2anat' + ext_data)
    fname_anat2template = os.path.join(path_output, 'anat2template' + ext_data)
    sct.generate_output_file(os.path.join(path_tmp, "warp_template2anat.nii.gz"), os.path.join(path_output, "warp_template2anat.nii.gz"), verbose)
    sct.generate_output_file(os.path.join(path_tmp, "warp_anat2template.nii.gz"), os.path.join(path_output, "warp_anat2template.nii.gz"), verbose)
    sct.generate_output_file(os.path.join(path_tmp, "template2anat.nii.gz"), fname_template2anat, verbose)
    sct.generate_output_file(os.path.join(path_tmp, "anat2template.nii.gz"), fname_anat2template, verbose)
    if ref == 'template':
        # copy straightening files in case subsequent SCT functions need them
        sct.generate_output_file(os.path.join(path_tmp, "warp_curve2straight.nii.gz"), os.path.join(path_output, "warp_curve2straight.nii.gz"), verbose)
        sct.generate_output_file(os.path.join(path_tmp, "warp_straight2curve.nii.gz"), os.path.join(path_output, "warp_straight2curve.nii.gz"), verbose)
        sct.generate_output_file(os.path.join(path_tmp, "straight_ref.nii.gz"), os.path.join(path_output, "straight_ref.nii.gz"), verbose)

    # Delete temporary files
    if param.remove_temp_files:
        sct.printv('\nDelete temporary files...', verbose)
        sct.rmtree(path_tmp, verbose=verbose)

    # display elapsed time
    elapsed_time = time.time() - start_time
    sct.printv('\nFinished! Elapsed time: ' + str(int(np.round(elapsed_time))) + 's', verbose)

    qc_dataset = arguments.get("-qc-dataset", None)
    qc_subject = arguments.get("-qc-subject", None)
    if param.path_qc is not None:
        generate_qc(fname_data, fname_in2=fname_template2anat, fname_seg=fname_seg, args=args,
                    path_qc=os.path.abspath(param.path_qc), dataset=qc_dataset, subject=qc_subject,
                    process='sct_register_to_template')
    sct.display_viewer_syntax([fname_data, fname_template2anat], verbose=verbose)
    sct.display_viewer_syntax([fname_template, fname_anat2template], verbose=verbose)