Пример #1
0
def train_sfpn_small_balance(depth=50, roiSize=224):
    train_dataset = sdataset.SmallPatchDataset("train", roiSize, balance=True)
    val_dataset = sdataset.SmallPatchDataset("val", roiSize)
    test_dataset = sdataset.SmallPatchDataset("test", roiSize)

    from sfpn import SFPN
    model = nn.DataParallel(SFPN().cuda())
    dcfg = {"bsize": 192, "nworker": 20, "collate": default_collate}

    model_name = "sp%d_sfpn%d_small_balance" % (roiSize, depth)
    train(model, model_name, train_dataset, val_dataset, test_dataset, dcfg)
Пример #2
0
def train_srdn_balance(roiSize=32):
    train_dataset = sdataset.SmallPatchDataset("train", roiSize, balance=True)
    val_dataset = sdataset.SmallPatchDataset("val", roiSize)
    test_dataset = sdataset.SmallPatchDataset("test", roiSize)

    from srdn import RDN
    # model = nn.DataParallel(
    #   RDN(g0=32, d=4, c=6, k=16, roiSize=roiSize).cuda())
    model = nn.DataParallel(RDN(g0=16, d=3, c=4, k=16, roiSize=roiSize).cuda())
    dcfg = {"bsize": 4096, "nworker": 20, "collate": default_collate}

    model_name = "sp%d_rdn_small_balance_d3c4k16" % roiSize
    train(model, model_name, train_dataset, val_dataset, test_dataset, dcfg)
Пример #3
0
def train_sfpn_small_aug(depth=50, roiSize=224):
    top = torchvision.transforms.ToPILImage()
    hf = torchvision.transforms.RandomHorizontalFlip()
    vf = torchvision.transforms.RandomVerticalFlip()
    rot = torchvision.transforms.RandomRotation(30)
    size = torchvision.transforms.Resize((roiSize, roiSize))
    tot = torchvision.transforms.ToTensor()
    trfm = torchvision.transforms.Compose([top, hf, vf, rot, size, tot])

    train_dataset = sdataset.SmallPatchDataset("train",
                                               roiSize=roiSize,
                                               transform=trfm)
    val_dataset = sdataset.SmallPatchDataset("val", roiSize=roiSize)
    test_dataset = sdataset.SmallPatchDataset("test", roiSize=roiSize)

    from sfpn import SFPN
    model = nn.DataParallel(SFPN().cuda())
    # dcfg = {"bsize": 192, "nworker": 20, "collate": default_collate}
    dcfg = {"bsize": 128, "nworker": 20, "collate": default_collate}

    model_name = "sp%d_sfpn%d_small_aug" % (roiSize, depth)
    train(model, model_name, train_dataset, val_dataset, test_dataset, dcfg)