Пример #1
0
    def em(self,
           obs,
           act=None,
           nb_iter=50,
           tol=1e-4,
           initialize=True,
           ctl_mstep_kwargs={},
           **kwargs):

        from sds.utils.general import train_test_split
        train_obs, train_act = train_test_split(
            obs, act, nb_traj_splits=self.ensemble_size, split_trajs=False)[:2]

        self.models, lls = self._parallel_em(train_obs,
                                             train_act,
                                             nb_iter=nb_iter,
                                             tol=tol,
                                             initialize=initialize,
                                             ctl_mstep_kwargs=ctl_mstep_kwargs)

        nb_train = [np.vstack(x).shape[0] for x in train_obs]
        nb_total = np.vstack(obs).shape[0]

        train_ll, total_ll = [], []
        for x, u, m in zip(train_obs, train_act, self.models):
            train_ll.append(m.log_normalizer(x, u))
            total_ll.append(m.log_normalizer(obs, act))

        train_scores = np.hstack(train_ll) / np.hstack(nb_train)
        test_scores = (np.hstack(total_ll) - np.hstack(train_ll))\
                     / (nb_total - np.hstack(nb_train))

        return train_scores, test_scores
Пример #2
0
    env.unwrapped.sigma = 1e-4
    env.unwrapped.uniform = True
    env.seed(1337)

    from stable_baselines import SAC

    _ctl = SAC.load("./sac_pendulum")
    sac_ctl = lambda x: _ctl.predict(x)[0]

    nb_rollouts, nb_steps = 50, 200
    obs, act = sample_env(env, nb_rollouts, nb_steps, sac_ctl, noise_std=1e-2)

    from sds.utils.general import train_test_split
    train_obs, train_act, _, _ = train_test_split(obs,
                                                  act,
                                                  seed=3,
                                                  nb_traj_splits=6,
                                                  split_trajs=False)

    fig, axs = plt.subplots(nrows=1, ncols=3, figsize=(16, 6))
    fig.suptitle('Pendulum SAC Demonstrations')

    for _obs, _act in zip(obs, act):
        # angle = np.arctan2(_obs[:, 1], _obs[:, 0])
        # axs[0].plot(angle)
        axs[0].plot(_obs[:, 0])
        axs[0] = beautify(axs[0])
        axs[1].plot(_obs[:, -1])
        axs[1] = beautify(axs[1])
        axs[2].plot(_act)
        axs[2] = beautify(axs[2])