budget = 20 fnames = ['../cache/fith/EI{}.p'.format(i) for i in xrange(5)] statesEI=search.multiMLEFS(ojf,lb,ub,kernel,1.,budget,fnames) fnames = ['../cache/fith/PE{}.p'.format(i) for i in xrange(5)] statesPE=search.multiPESFS(ojf,lb,ub,kernel,1.,budget,fnames) kindex = GPdc.MAT52CS prior = sp.array([0.]+[-1.]*(d+1)+[-2.]) sprior = sp.array([1.]*(d+2)+[2.]) kernel = [kindex,prior,sprior] fnames = ["../cache/fith/PI{}.p".format(i) for i in xrange(5)] statesPI = search.multiPESIPS(ojfa,lb,ub,kernel,10,fnames) x=[] y=[] for stateEI in statesEI: a[2].plot(stateEI[11],'r') #a[3].plot([sum(stateEI[5][:i]) for i in xrange(len(stateEI[5]))],stateEI[11],'r') x.append([sum(stateEI[5][:i]) for i in xrange(len(stateEI[5]))]) y.append(stateEI[11].flatten()) print 'reccomended under EI: {} : {}'.format([10**i for i in stateEI[4][-1]],ojf(stateEI[4][-1],None,None)[0]) X_,Y_,lb_,ub_ = OPTutils.mergelines(x,y) a[3].fill_between(X_,lb_,ub_,facecolor='lightcoral',edgecolor='lightcoral',alpha=0.5) a[3].plot(X_,Y_,'r') x=[]
ub = sp.array([[1] * d]) budget = 20 fnames = ['../cache/fith/EI{}.p'.format(i) for i in xrange(5)] statesEI = search.multiMLEFS(ojf, lb, ub, kernel, 1., budget, fnames) fnames = ['../cache/fith/PE{}.p'.format(i) for i in xrange(5)] statesPE = search.multiPESFS(ojf, lb, ub, kernel, 1., budget, fnames) kindex = GPdc.MAT52CS prior = sp.array([0.] + [-1.] * (d + 1) + [-2.]) sprior = sp.array([1.] * (d + 2) + [2.]) kernel = [kindex, prior, sprior] fnames = ["../cache/fith/PI{}.p".format(i) for i in xrange(5)] statesPI = search.multiPESIPS(ojfa, lb, ub, kernel, 10, fnames) x = [] y = [] for stateEI in statesEI: a[2].plot(stateEI[11], 'r') #a[3].plot([sum(stateEI[5][:i]) for i in xrange(len(stateEI[5]))],stateEI[11],'r') x.append([sum(stateEI[5][:i]) for i in xrange(len(stateEI[5]))]) y.append(stateEI[11].flatten()) print 'reccomended under EI: {} : {}'.format( [10**i for i in stateEI[4][-1]], ojf(stateEI[4][-1], None, None)[0]) X_, Y_, lb_, ub_ = OPTutils.mergelines(x, y) a[3].fill_between(X_, lb_, ub_,
plane00 = planemin(0.) plane025 = planemin(0.25) plane05 = planemin(0.5) plane001 = planemin(0.01) plane10 = planemin(1.) nreps=6 bd=35 kindex = GPdc.MAT52CS prior = sp.array([0.]+[-1.]*(d+1)+[-2.]) sprior = sp.array([1.]*(d+2)+[2.]) kernel = [kindex,prior,sprior] names = ["../cache/IPS_/PESIPS_"+str(dcc)+"_"+str(fls)+"_"+str(seed)+"_"+str(i)+".p" for i in xrange(nreps)] results = search.multiPESIPS(ojf,lb,ub,kernel,bd,names) f,a = plt.subplots(2) aot = a[0].twinx() Xa = [sp.array(r[0][:,0]) for r in results] #Ca = [[sum(r[5][:j]) for j in xrange(len(r[5]))] for r in results] x=[] y=[] w=[] for r in results: #a[0].plot(r[0][:,0].flatten(),'b') #a[0].plot(r[5],'r') #a[1].plot((r[11].flatten()-ymin),'b')