Пример #1
0
def record_searches(recorder, grid):
    # DFS
    recorder.record_still_frame(grid, 100)
    dfs = DepthFirstSearch(grid, recorder)
    dfs.search(end, start)

    # BFS
    recorder.record_still_frame(grid, 100)
    bfs = BreadthFirstSearch(grid, recorder)
    bfs.search(end, start)

    # A*
    recorder.record_still_frame(grid, 100)
    a_star = AStarSearch(grid, recorder)
    a_star.search(end, start)

    recorder.record_still_frame(a_star.grid, 100)
 def __init__(self, outputFile, discretizer):
     self.f = outputFile
     self.discretizer = discretizer
     self.behaviors = ["explore", "faceObject", "tryGrab", "release"]
     self.stateBehaviors = {}  # State -> Behavior -> Count
     self.algorithmState = "random"
     self.graph = MarkovChainGraph()
     self.search = DepthFirstSearch()
     self.randomMoves = 0
     self.randomBehaviors = ["explore"] * 80 + ["faceObject"] * 10 + ["tryGrab"] * 5 + ["release"] * 5
     self.sinceLastNewState = 0
     self.previous_state = None
     self.previous_behavior = None
     self.last_search_behavior = None
     self.same_search_behavior = 0
     self.round = 0
class SmartCollector:
    def __init__(self, outputFile, discretizer):
        self.f = outputFile
        self.discretizer = discretizer
        self.behaviors = ["explore", "faceObject", "tryGrab", "release"]
        self.stateBehaviors = {}  # State -> Behavior -> Count
        self.algorithmState = "random"
        self.graph = MarkovChainGraph()
        self.search = DepthFirstSearch()
        self.randomMoves = 0
        self.randomBehaviors = ["explore"] * 80 + ["faceObject"] * 10 + ["tryGrab"] * 5 + ["release"] * 5
        self.sinceLastNewState = 0
        self.previous_state = None
        self.previous_behavior = None
        self.last_search_behavior = None
        self.same_search_behavior = 0
        self.round = 0

    def getInitialState(self, sensorState):
        self.initialState = self.discretizer.discretize(normalize(sensorState))
        return self.nextBehavior(sensorState)

    def eventHandler(self, state, sensorState, behaviorResult):
        return self.nextBehavior(sensorState)

    def selectBehavior(self, stateBehaviors):
        for b in self.behaviors:
            if b not in stateBehaviors:
                return b

        minpair = (maxint, "")
        for behavior, count in stateBehaviors.iteritems():
            if count < minpair[0]:
                minpair = (count, behavior)

        return minpair[1]

    def minCountState(self):
        mincount = maxint
        minstate = ""
        for state, behaviors in self.stateBehaviors.iteritems():
            if mincount > behaviors["count"]:
                mincount = behaviors["count"]
                minstate = state
        return (minstate, mincount)

    def randomBehavior(self, dis, discretized):
        if self.stateBehaviors[dis]["count"] == 0 or self.randomMoves > 20:
            self.randomMoves = 0
            self.algorithmState = "intelligent"
            return self.intelligentBehavior(dis, discretized)
        else:
            self.randomMoves += 1
            return random.choice(self.randomBehaviors)

    def intelligentBehavior(self, dis, discretized):
        if self.sinceLastNewState > 20:
            self.sinceLastNewState = 0
            self.algorithmState = "random"
            return self.randomBehavior(dis, discretized)

        if self.stateBehaviors[dis]["count"] > (self.minCountState()[1] + 20):
            self.sinceLastNewState = 0
            self.algorithmState = "search"
            self.goal_state, self.goal_state_count = self.minCountState()
            return self.searchBehavior(dis, discretized)

        self.sinceLastNewState += 1
        return self.selectBehavior(self.stateBehaviors[dis])

    def searchBehavior(self, dis, discretized):
        if dis == self.goal_state or dis not in self.stateBehaviors:
            self.goal_state = None
            self.goal_state_count = None
            self.algorithmState = "intelligent"
            return self.intelligentBehavior(dis, discretized)
        problem = FindStateProblem(self.goal_state)
        behavior, err = self.search.choose_behavior([discretized], self.graph, problem)

        print("Searching for:", self.goal_state)
        if err <= 0 or self.same_search_behavior > 5:
            print("No path, random")
            self.same_search_behavior = 0
            return random.choice(self.randomBehaviors)

        if self.last_search_behavior == behavior:
            self.same_search_behavior += 1
        else:
            self.last_search_behavior = behavior
            self.same_search_behavior = 0

        return behavior

    def nextBehavior(self, sensorState):
        self.round += 1
        print("\nRound:", self.round)
        print("Algorithm:", self.algorithmState)
        print(sensorState, file=self.f)
        normSensorState = normalize(sensorState)
        discretized = self.discretizer.discretize(normSensorState)
        dis = self.graph.state_to_key(discretized)

        if self.previous_state is not None and self.previous_behavior is not None:
            self.graph.construct([self.previous_state, discretized], [self.previous_behavior])

        if dis not in self.stateBehaviors:
            self.sinceLastNewState = 0
            self.stateBehaviors[dis] = {}
            self.stateBehaviors[dis]["count"] = 0
            self.stateBehaviors[dis]["origin"] = discretized

        behavior = "explore"
        if self.algorithmState == "random":
            behavior = self.randomBehavior(dis, discretized)
        elif self.algorithmState == "intelligent":
            behavior = self.intelligentBehavior(dis, discretized)
        elif self.algorithmState == "search":
            behavior = self.searchBehavior(dis, discretized)

        if behavior not in self.stateBehaviors[dis]:
            self.stateBehaviors[dis][behavior] = 0

        self.stateBehaviors[dis][behavior] += 1
        self.stateBehaviors[dis]["count"] += 1
        print(self.stateBehaviors)
        print("State:", dis)
        print("Behavior:", behavior)
        print(behavior, file=self.f)
        self.previous_state = discretized
        self.previous_behavior = behavior
        self.graph.visualize("dot/graph.dot", self.initialState)
        self.graph.visualize("dot/graph_%d.dot" % self.round, self.initialState)
        return behavior