Пример #1
0
    def _test_rule(self, rule, n_prototypes=20, random_state=None):
        """Generic test case for prototype selectors."""
        self.logger.info("Testing: " + rule + " selector.")
        ps = CPrototypesSelector.create(rule)
        ps.verbose = 2
        if random_state is None:
            ds_reduced = ps.select(self.dataset, n_prototypes=n_prototypes)
        else:
            ds_reduced = ps.select(self.dataset,
                                   n_prototypes=n_prototypes,
                                   random_state=random_state)
        if self.plots is True:
            self.draw_selection(ds_reduced, rule)

        idx_path = fm.join(fm.abspath(__file__), "idx_{:}.gz".format(rule))
        self.assert_array_equal(ps.sel_idx,
                                CArray.load(idx_path, dtype=int).ravel())
Пример #2
0
    def _compare_scalers(self,
                         scaler,
                         scaler_sklearn,
                         array,
                         convert_to_dense=False):
        """Compare wrapped scikit-learn scaler to the unwrapped scaler.

        Parameters
        ----------
        array : CArray
        scaler : A wrapped CScaler
        scaler_sklearn
            Scikit-learn normalizer.
        convert_to_dense : bool, optional
            If True the data used by the SkLearn scaler will be converted

            to dense.

        Returns
        -------
        scaler_sklearn
            Trained Scikit-learn normalizer (from `sklearn.preprocessing`).
        scaler : CScaler
            Trained normalizer.

        """
        self.logger.info("Original array is:\n{:}".format(array))

        array_sk = array.get_data() if convert_to_dense is False \
            else array.tondarray()

        # Sklearn normalizer
        scaler_sklearn.fit(array_sk, None)
        transform_sklearn = CArray(scaler_sklearn.transform(array_sk))

        # Our normalizer
        scaler._fit(array)
        transform = scaler.forward(array)

        self.logger.info("sklearn result is:\n{:}".format(transform_sklearn))
        self.logger.info("Our result is:\n{:}".format(transform))

        self.assert_array_almost_equal(transform_sklearn, transform)

        return scaler, scaler_sklearn
Пример #3
0
    def _backward(self, w=None):
        """Compute the gradient w.r.t. the input cached during the forward
        pass.

        Parameters
        ----------
        w : CArray or None, optional
            If CArray, will be left-multiplied to the gradient
            of the preprocessor.

        Returns
        -------
        gradient : CArray
            Gradient of the normalizer wrt input data.
            it will have dimensionality
            shape (w.shape[0], x.shape[1]) if `w` is passed as input
            (x.shape[1], x.shape[1]) otherwise.

        """
        x = self._cached_x
        if x.shape[0] > 1:
            raise ValueError("Parameter 'x' passed to the forward() method "
                             "needs to be a one dimensional vector "
                             "(passed a {:} dimensional vector)".format(
                                 x.ndim))

        d = self._cached_x.size  # get the number of features
        if w is not None:
            if (w.ndim != 1) or (w.size != d):
                raise ValueError("Parameter 'w' needs to be a one dimensional "
                                 "vector with the same number of elements "
                                 "of parameter 'x' of the forward method "
                                 "(passed a {:} dimensional vector with {:} "
                                 "elements)".format(w.ndim, w.size))

        # compute the norm of x: ||x||
        x_norm = self._compute_x_norm(x)
        # compute the gradient of the given norm: d||x||/dx
        grad_norm_x = self._compute_norm_gradient(x, x_norm)

        # this is the derivative of the ratio x/||x||
        grad = CArray.eye(d, d) * x_norm.item() - grad_norm_x.T.dot(x)
        grad /= (x_norm**2)

        return grad if w is None else w.dot(grad)
Пример #4
0
    def _backward(self, w=None):
        """Calculate Histogram Intersection kernel gradient wrt
        cached vector 'x'.

        The kernel is computed between each row of rv
        (denoted with rk) and x, as::
            sum_i ( min(rk[i], x[i]) )

        The gradient computed w.r.t. x is thus
        1 if x[i] < rk[i], and 0 elsewhere.

        Parameters
        ----------
        w : CArray of shape (1, n_rv) or None
            if CArray, it is pre-multiplied to the gradient
            of the module, as in standard reverse-mode autodiff.

        Returns
        -------
        kernel_gradient : CArray
            Kernel gradient of rv with respect to vector x,
            shape (n_rv, n_features) if n_rv > 1 and w is None,
            else (1, n_features).

        """
        # Checking if cached x is a vector
        if not self._cached_x.is_vector_like:
            raise ValueError(
                "kernel gradient can be computed only wrt vector-like arrays.")

        if self._rv is None:
            raise ValueError("Please run forward with caching=True or set"
                             "`rv` first.")

        if self._cached_x.issparse is True:
            # Broadcasting not supported for sparse arrays
            x_broadcast = self._cached_x.repmat(self._rv.shape[0], 1)
        else:  # Broadcasting is supported by design for dense arrays
            x_broadcast = self._cached_x

        grad = CArray.zeros(shape=self._rv.shape,
                            sparse=self._cached_x.issparse)
        grad[x_broadcast <
             self._rv] = 1  # TODO support from CArray still missing
        return grad if w is None else w.dot(grad)
Пример #5
0
    def setUp(self):

        self.classifier = CClassifierSVM(kernel='linear', C=1.0)

        self.lb = -2
        self.ub = +2

        n_tr = 20
        n_ts = 10
        n_features = 2

        n_reps = 1

        self.sec_eval = []
        self.attack_ds = []
        for rep_i in range(n_reps):
            self.logger.info(
                "Loading `random_blobs` with seed: {:}".format(rep_i))
            loader = CDLRandomBlobs(n_samples=n_tr + n_ts,
                                    n_features=n_features,
                                    centers=[(-0.5, -0.5), (+0.5, +0.5)],
                                    center_box=(-0.5, 0.5),
                                    cluster_std=0.5,
                                    random_state=rep_i * 100 + 10)
            ds = loader.load()

            self.tr = ds[:n_tr, :]
            self.ts = ds[n_tr:, :]

            self.classifier.fit(self.tr.X, self.tr.Y)

            # only manipulate positive samples, targeting negative ones
            self.y_target = None
            self.attack_classes = CArray([1])

            for create_fn in (self._attack_pgd_ls, self._attack_cleverhans):
                self.attack_ds.append(self.ts)
                attack, param_name, param_values = create_fn()
                # set sec eval object
                self.sec_eval.append(
                    CSecEval(
                        attack=attack,
                        param_name=param_name,
                        param_values=param_values,
                    ))
Пример #6
0
    def setUp(self):

        self.max_length = 2**20
        self.padding_value = 256
        self.root_module_path = os.path.dirname(
            os.path.dirname(os.path.dirname(__file__)))
        self.classifier = CClassifierEnd2EndMalware(MalConv())
        self.malconv_plus = CClassifierEnd2EndMalware(MalConv(),
                                                      plus_version=True)
        self.surrogate_classifier = CClassifierEnd2EndMalware(MalConv())
        self.ember_path = os.path.join(
            self.root_module_path, "../data/trained/pretrained_malconv.pth")
        self.surrogate_path = os.path.join(
            self.root_module_path, "../data/trained/pretrained_malconv.pth")
        self.malware_folder = os.path.join(
            self.root_module_path, "../data/malware_samples/test_folder")
        self.goodware_folder = os.path.join(self.root_module_path,
                                            "../data/goodware_samples/")
        self.single_malware_path = os.path.join(
            self.root_module_path, "../data/malware_samples/test_malware")
        self.baseline = np.array(
            [np.zeros(self.max_length) + self.padding_value])
        X = []
        y = []
        for f in listdir(self.malware_folder):
            complete_path = os.path.join(self.malware_folder, f)
            if not os.path.isfile(complete_path):
                continue
            if "PE32" not in magic.from_file(complete_path): continue
            with open(complete_path, "rb") as malware:
                print(f'>Using {f}')
                code = MalConv.bytes_to_numpy(malware.read(), self.max_length,
                                              256, False)
            X.append(code)
            y.append(1)
        X.append(self.baseline[0])
        y.append(0)
        self.X = CArray(X)
        self.Y = y
        with open(self.single_malware_path, "rb") as f:
            self.byte_malware = bytearray(f.read())
        self.malware = np.array([
            MalConv.bytes_to_numpy(self.byte_malware, self.max_length, 256,
                                   False)
        ])
    def compute_performance(self, estimator, dataset):
        """Split data in folds and return the mean estimator performance.

        Parameters
        ----------
        estimator : CClassifier 
            The Classifier that we want evaluate
        dataset : CDataset
            Dataset that we want use for evaluate the classifier

        Returns
        -------        
        score : float
            Mean performance score of estimator computed on the K-Folds.

        """
        # Placeholder for folds' score
        fold_number = len(self.splitter.tr_idx)
        splits_score = CArray.zeros(fold_number)

        # estimate the performance of the estimator on each fold
        for split_idx in range(fold_number):

            train_dataset = dataset[self.splitter.tr_idx[split_idx], :]
            test_dataset = dataset[self.splitter.ts_idx[split_idx], :]

            # Train the estimator
            estimator.fit(train_dataset)

            pred_label, pred_score = estimator.predict(
                test_dataset.X, return_decision_function=True)

            if dataset.num_classes > 2:
                pred_score = None  # Score cannot be used in multiclass case
            else:
                # Extracting score of the positive class
                pred_score = pred_score[:, 1].ravel()

            this_test_score = self.metric.performance_score(test_dataset.Y,
                                                            y_pred=pred_label,
                                                            score=pred_score)

            splits_score[split_idx] = this_test_score

        return splits_score.mean()
Пример #8
0
    def test_minimize_beale(self):
        """Test for COptimizer.minimize() method on 3h-camel fun.
        This function tests the optimization in discrete space,
        with a floating eta (l1 constraint) and an integer starting point.
        The solution expected by this test is a float vector.
        """
        opt_params = {
            'eta': 1e-6,
            'eta_min': 1e-4,
            'eps': 1e-12,
            'constr': CConstraintL1(center=CArray([2, 0]), radius=2),
            'bounds': CConstraintBox(lb=0, ub=4)
        }

        self._test_minimize(COptimizerPGDLS,
                            'beale',
                            opt_params=opt_params,
                            label='discrete-l1')
Пример #9
0
    def sv_margin_idx(self, tol=1e-6):
        """Indices of Margin Support Vectors.

        Parameters
        ----------
        tol : float
            Alpha value threshold for considering a
            Support Vector on the margin.

        Returns
        -------
        indices : CArray
            Flat array with the indices of the Margin Support Vectors.

        """
        s = self.alpha.find(
            (abs(self.alpha) >= tol) * (abs(self.alpha) <= self.C - tol))
        return CArray(s)
    def apply_feasible_manipulations(self, t, x: CArray) -> CArray:
        """
		Apply the padding practical manipulation on the input sample
		Parameters
		----------
		t : CArray
			the vector of manipulations in [0,1]
		x : CArray
			the input space sample to perturb

		Returns
		-------
		CArray:
			the adversarial malware
		"""
        byte_values = (t * 255).astype(np.int)
        x_adv = x.append(byte_values)
        return x_adv
Пример #11
0
    def test_save_load_sparse_conversion(self):
        """Test save/load of CArray"""
        # Array should be stored and loaded correctly whatever sparse format
        self.array_sparse._data._data = self.array_sparse._data.todok()

        self.array_sparse.save(self.test_file)

        # Saving to a file handle is not supported for sparse arrays
        with self.assertRaises(NotImplementedError):
            with open(self.test_file_2, 'w') as f:
                self.array_sparse.save(f)

        loaded_array_sparse = CArray.load(self.test_file,
                                          arrayformat='sparse',
                                          dtype=int)

        self.assertFalse((loaded_array_sparse != self.array_sparse).any(),
                         "Saved and loaded arrays (sparse) are not equal!")
Пример #12
0
        def sklearn_comp(array):
            self.logger.info("Original array is:\n{:}".format(array))

            # Sklearn normalizer
            sklearn_pca = PCA().fit(array.tondarray())
            target = CArray(sklearn_pca.transform(array.tondarray()))
            # Our normalizer
            pca = CPCA().fit(array)
            result = pca.transform(array)

            self.logger.info("Sklearn result is:\n{:}".format(target))
            self.logger.info("Result is:\n{:}".format(result))

            self.assert_array_almost_equal(result, target)

            original = pca.inverse_transform(result)

            self.assert_array_almost_equal(original, array)
Пример #13
0
    def _grad(self, x):
        """McCormick function gradient wrt. point x."""
        x = x.atleast_2d()
        if x.shape[1] != 2:
            raise ValueError("Gradient of McCormick function "
                             "only available for 2 dimensions")
        # Computing gradient of each dimension
        grad1_1 = (x[0] + x[1]).cos()
        grad1_2 = 2 * (x[0] - x[1])
        grad1_3 = -1.5
        grad2_1 = (x[0] + x[1]).cos()
        grad2_2 = -2 * (x[0] - x[1])
        grad2_3 = 2.5

        grad1 = grad1_1 + grad1_2 + grad1_3
        grad2 = grad2_1 + grad2_2 + grad2_3

        return CArray.concatenate(grad1, grad2, axis=1).ravel()
Пример #14
0
    def test_save_load_sparse(self):
        """Test save/load of CArray"""
        self.logger.info(
            "UNITTEST - CArray - Testing save/load for sparse matrix")

        self.array_sparse.save(self.test_file)

        # Saving to a file handle is not supported for sparse arrays
        with self.assertRaises(NotImplementedError):
            with open(self.test_file_2, 'w') as f:
                self.array_sparse.save(f)

        loaded_array_sparse = CArray.load(self.test_file,
                                          arrayformat='sparse',
                                          dtype=int)

        self.assertFalse((loaded_array_sparse != self.array_sparse).any(),
                         "Saved and loaded arrays (sparse) are not equal!")
    def fun_ndarray(self, x, *args, **kwargs):
        """Evaluates function on x (ndarray).

        Parameters
        ----------
        x : np.ndarray
            Argument of fun as ndarray.
        args, kwargs
            Other optional parameter of the function.

        Returns
        -------
        out_fun : scalar or CArray
            Function output, scalar or CArray depending
            on the inner function.

        """
        return self.fun(CArray(x), *args, **kwargs)
Пример #16
0
def predict(args):
    if global_state.target is None:
        error_prompt('First you need to set a target.')
        return
    if args.path is None:
        if global_state.data_paths is None:
            error_prompt('You have to give an input path.')
            return
        paths = global_state.data_paths
    elif not os.path.isfile(args.path):
        error_prompt(f'{args.path} does not exists.')
        return
    else:
        paths = [args.path]
    net = create_wrapper_for_global_target()

    stats = {
        'detected': 0,
        'total': 0,
        'confidence': 0,
    }

    for p in paths:
        with open(p, 'rb') as handle:
            code = handle.read()
        info_prompt(f'Computing prediction for {p}')
        code = CArray(np.frombuffer(code, dtype=np.uint8)).atleast_2d()
        y_pred, confidence = net.predict(code, return_decision_function=True)
        y_pred = y_pred.item()
        score = confidence[0, 1].item()
        stats['detected'] += int(y_pred != 0)
        stats['total'] += 1
        stats['confidence'] += score
        info_prompt(f'predicted label: {y_pred}')
        info_prompt(f'confidence: {score}')
        print('-' * 20)
    if stats['total'] >= 1:
        separator_prompt()
        success_prompt('Prediction stats:')
        success_prompt(f'Detected: {stats["detected"]} / {stats["total"]}')
        success_prompt(
            f'Detection Rate: {stats["detected"] / stats["total"] * 100} %')
        success_prompt(
            f'Mean confidence: {stats["confidence"] / stats["total"]}')
Пример #17
0
def refine_roc(fpr, tpr, th):
    """Function to ensure the bounds of a ROC.

    The first and last points should be (0,0) and (1,1) respectively.

    Parameters
    ----------
    fpr : CArray
        False Positive Rates, as returned by `.BaseRoc.compute()`.
    tpr : CArray
        True Positive Rates, as returned by `.BaseRoc.compute()`.
    th : CArray
        Thresholds, as returned by `.BaseRoc.compute()`.

    """
    if tpr[0] != fpr[0] or tpr[0] != 0 or fpr[0] != 0:
        fpr = CArray(0).append(fpr)
        tpr = CArray(0).append(tpr)
        th = CArray(th[0] + 1e-3).append(th)
    if tpr[-1] != fpr[-1] or tpr[-1] != 1 or fpr[-1] != 1:
        fpr = fpr.append(1)
        tpr = tpr.append(1)
        th = th.append(th[-1] - 1e-3)
    return fpr, tpr, th
Пример #18
0
    def extract_features(self, x):
        """
		Crops and pads the input sample for being passed to the network.

		Parameters
		----------
		x : CArray
			The sample in the input space.
		Returns
		-------
		CArray
			The feature space representation of the input sample.
		"""
        clf: CClassifierEnd2EndMalware = self.classifier
        padded_x = CArray.zeros(
            (1, clf.get_input_max_length())) + clf.get_embedding_value()
        length = min(x.shape[-1], clf.get_input_max_length())
        padded_x[0, :length] = x[0, :length] + clf.get_is_shifting_values()
        return padded_x
Пример #19
0
    def logpdf(self, data):
        """Log of the probability density function.

        Parameters
        ----------
        data : CArray
            Quantiles, with the last axis of x denoting the components.

        Returns
        -------
        pdf: CArray
            Probability density function computed at input data.

        """
        cov = self.cov
        if isinstance(cov, CArray):
            cov = cov.tondarray()
        return CArray(multivariate_normal.logpdf(data.tondarray(),
                                                 self.mean, cov))
Пример #20
0
    def objective_function_gradient(self, x):
        """Compute the gradient of the evasion objective function.

        Parameters
        ----------
        x : CArray
            A single point.

        """
        y_pred, scores = self.classifier.predict(x,
                                                 return_decision_function=True)

        k, c = self._find_k_c(y_pred, scores)

        w = CArray.zeros(shape=(self.classifier.n_classes, ))
        w[k.item()] = 1
        w[c.item()] = -1
        grad = self.classifier.gradient(x, w)
        return grad if self.y_target is None else -grad
    def _grad(self, x):
        """Beale function gradient wrt. point x."""
        x = x.atleast_2d()
        if x.shape[1] != 2:
            raise ValueError("Gradient of Beale function "
                             "only available for 2 dimensions")
        # Computing gradient of each dimension
        grad1_1 = 2 * (1.5 - x[0] + x[0] * x[1]) * (-1 + x[1])
        grad1_2 = 2 * (2.25 - x[0] + x[0] * x[1]**2) * (-1 + x[1]**2)
        grad1_3 = 2 * (2.625 - x[0] + x[0] * x[1]**3) * (-1 + x[1]**3)
        grad2_1 = 2 * (1.5 - x[0] + x[0] * x[1]) * x[0]
        grad2_2 = 2 * (2.25 - x[0] + x[0] * x[1]**2) * (2 * x[0] * x[1])
        grad2_3 = 2 * (2.625 - x[0] + x[0] * x[1] ** 3) * \
            (3 * x[0] * x[1] ** 2)

        grad1 = grad1_1 + grad1_2 + grad1_3
        grad2 = grad2_1 + grad2_2 + grad2_3

        return CArray.concatenate(grad1, grad2, axis=1).ravel()
Пример #22
0
    def _fprop_fn(self, x_np):
        """Numpy function that computes and returns the output of the model.

        Parameters
        ----------
        x_np: np.ndarray
            The input that should be classified by the model.

        Returns
        -------
        scores: np.ndarray
            The scores given as output by the classifier.

        """
        # compute the scores (the model output)
        f_x = self.fun.fun
        scores = f_x(CArray(x_np)).atleast_2d().tondarray().astype(np.float32)

        return scores
Пример #23
0
    def _xk(self, x, fx, *args):
        """Returns a new point after gradient descent."""

        # compute gradient
        grad = self._fun.gradient(x, *args)
        self._grad = grad  # only used for visualization/convergence

        norm = grad.norm()
        if norm < 1e-20:
            return x, fx  # return same point (and exit optimization)

        grad = grad / norm

        # filter modifications that would violate bounds (to sparsify gradient)
        grad = self._box_projected_gradient(x, grad)

        if self.discrete or (self.constr is not None
                             and self.constr.class_type == 'l1'):
            # project z onto l1 constraint (via dual norm)
            grad = self._l1_projected_gradient(grad)

        next_point = x - grad * self._line_search.eta

        if self.constr is not None and self.constr.is_violated(next_point):
            self.logger.debug("Line-search on distance constraint.")
            grad = CArray(x - self.constr.projection(next_point))
            grad_norm = grad.norm(order=2)
            if grad_norm > 1e-20:
                grad /= grad_norm
            if self.constr.class_type == 'l1':
                grad = grad.sign()  # to move along the l1 ball surface
            z, fz = self._line_search.minimize(x, -grad, fx)
            return z, fz

        if self.bounds is not None and self.bounds.is_violated(next_point):
            self.logger.debug("Line-search on box constraint.")
            grad = CArray(x - self.bounds.projection(next_point))
            grad_norm = grad.norm(order=2)
            if grad_norm > 1e-20:
                grad /= grad_norm
            z, fz = self._line_search.minimize(x, -grad, fx)
            return z, fz

        z, fz = self._line_search.minimize(x, -grad, fx)
        return z, fz
Пример #24
0
    def _get_tr_without_point(self, p_idx):
        """
        Given the idx of a point return a copy of the training dataset
        without that point

        Parameters
        ----------
        p_idx int
            idx of the point that is wanted to be excluded by the training
            dataset

        Returns
        -------
        new_tr CDataset
                dataset without the point with the given index
        """
        all_idx = CArray.arange(self._tr.num_samples)
        not_p_idx = all_idx.find(all_idx != p_idx)
        new_tr = self._tr[not_p_idx, :]
        return new_tr
    def _choose_x0_2c(self, x0_img_class):
        """Find a sample of that belong to the required class.
        
        Parameters
        ----------
        x0_img_class : int

        Returns
        -------
        x0 : CArray
        y0 : CArray
        
        """
        adv_img_idx = \
            CArray(self.ts.Y.find(self.ts.Y == x0_img_class))[0]

        x0 = self.ts.X[adv_img_idx, :]
        y0 = self.ts.Y[adv_img_idx]

        return x0, y0
Пример #26
0
	def compute_black_box_optimization(self, x: CArray) -> CArray:
		self.problem.init_starting_point(x)
		seed = self.problem.seed if self.problem.seed is not None else 0
		# algorithm = pygmo.algorithm(pygmo.sga(gen=self.problem.iterations, seed=seed, crossover='exponential', mutation='gaussian'))
		algorithm = pygmo.algorithm(pygmo.sga(gen=self.problem.iterations, seed=seed))
		algorithm.set_verbosity(1)
		start_t = time.time()
		pygmo_problem = pygmo.problem(self.problem)
		pygmo_population = pygmo.population(pygmo_problem, size=self.problem.population_size, seed=self.problem.seed)
		minimization_results = algorithm.evolve(pygmo_population)
		end_t = time.time()
		evolved_problem = minimization_results.problem.extract(type(self.problem))
		confidences, fitness, sizes = evolved_problem.export_internal_results()
		self.confidences_ = confidences
		self.fitness_ = fitness
		self.sizes_ = sizes
		self.evolved_problem_ = evolved_problem
		self.elapsed_time_ = end_t - start_t
		best_t = minimization_results.champion_x
		return CArray(best_t)
Пример #27
0
 def create_real_sample_from_adv(self,
                                 original_file_path: str,
                                 x_adv: CArray,
                                 new_file_path: str = None):
     with open(original_file_path, 'rb') as f:
         code = bytearray(f.read())
     padding_index = x_adv.find(
         x_adv == self.classifier.get_embedding_value())
     padded_x_adv = copy.copy(x_adv)
     if padding_index:
         padded_x_adv = padded_x_adv[0, :padding_index[0]]
     if self.shift_values:
         padded_x_adv = padded_x_adv - 1
     padded_x_adv = padded_x_adv.astype(np.uint8).flatten().tolist()
     padded_x_adv = b''.join([bytes([i]) for i in padded_x_adv])
     code[:len(padded_x_adv)] = padded_x_adv
     if new_file_path:
         with open(new_file_path, 'wb') as f:
             f.write(code)
     return code
Пример #28
0
    def objective_function(self, xc, acc=False):
        """
        Parameters
        ----------
        xc: poisoning point

        Returns
        -------
        f_obj: values of objective function (average hinge loss) at x
        """

        # index of poisoning point within xc.
        # This will be replaced by the input parameter xc
        if self._idx is None:
            idx = 0
        else:
            idx = self._idx

        xc = CArray(xc).atleast_2d()

        n_samples = xc.shape[0]
        if n_samples > 1:
            raise TypeError("xc is not a single sample!")

        self._xc[idx, :] = xc
        clf, tr = self._update_poisoned_clf()

        # targeted attacks
        y_ts = self._y_target if self._y_target is not None else self.val.Y

        y_pred, score = clf.predict(self.val.X, return_decision_function=True)

        # TODO: binary loss check
        if self._attacker_loss.class_type != 'softmax':
            score = CArray(score[:, 1].ravel())

        if acc is True:
            error = CArray(y_ts != y_pred).ravel()  # compute test error
        else:
            error = self._attacker_loss.loss(y_ts, score)
        obj = error.mean()
        lid_cost = self.fast_lid_cost_calculation(xc.tondarray(), self.lid_k)
        obj = obj - lid_cost
        return obj
Пример #29
0
    def test_load_paths(self):
        """Testing img dataset path loading."""
        dl = CDataLoaderImgFolders()

        self.logger.info("Testing loading paths of rgb dataset...")

        ds_rgb_path = fm.join(fm.abspath(__file__), "ds_rgb")

        ds = dl.load(ds_path=ds_rgb_path, img_format='jpeg', load_data=False)

        self.logger.info(
            "Loaded {:} images of {:} features, {:} classes".format(
                ds.num_samples, ds.num_features, ds.num_classes))

        # TODO: USE 'U' AFTER TRANSITION TO PYTHON 3
        self.assertIn(ds.X.dtype.char, ('S', 'U'))

        # Checking behavior of `get_labels_ovr`
        ovr = ds.get_labels_ovr(pos_label='tiger')  # Y : ['coyote', 'tiger']
        self.assert_array_equal(ovr, CArray([0, 1]))
    def test_approx_fprime_check_grad(self):
        """Test if the gradient check made up with
        COptimizer.approx_fprime() and .check_grad() methods is correct."""
        self.logger.info(
            "Test for COptimizer.approx_fprime() and .check_grad() methods.")

        x0 = CArray([1., 0.])  # Starting point for minimization

        for fun_id in self.funcs:
            fun = self.funcs[fun_id]

            self.logger.info("Testing grad approx of {:}".format(
                fun.__class__.__name__))

            grad_err = fun.check_grad(x0, epsilon=1e-8)

            self.logger.info(
                "(Real grad - approx).norm(): {:}".format(grad_err))

            self.assertLess(grad_err, 1e-3)