import glob from PIL import Image from segmenter import Segmenter image_paths = glob.glob("input/*.png") # get all images in the input folder segmenter = Segmenter() # create an instance of the classifier predictions = segmenter.run( image_paths) # run the classifier to get predictions segmenter.save_predictions(predictions, image_paths) # save the results to output folder Image.fromarray( predictions[0]).show() # show a single prediction (the first image)
generator = LinkGen() generator.run(categories) downloader = Downloader(categories, config.BATCH_SIZE) segmenter = Segmenter() remover = Remover() logger = Logger() processed_video_count = utils.get_processed_video_count() while processed_video_count < config.NUMBER_OF_LINKS: processed_video_count = utils.get_processed_video_count() load = utils.get_checkpoints_flag() downloader.run() segmenter.run() source = config.NEURAL_NETWORK_PATH tfrecords_command = 'python2.7 %s/utils/generate_tfrecords_dataset.py' \ ' --videos_dir %s --save_dir %s' % (config.NEURAL_NETWORK_PATH, config.PROCESSED_VIDEOS_PATH, config.TFRECORDS_PATH) print(tfrecords_command + '\n') start_time = logger.get_current_timestamp() subprocess.run(tfrecords_command, shell=True) end_time = logger.get_current_timestamp() logger.log_tfrecords_generation_time(start_time, end_time) starter = NeuralNetworkStarter(config.LEARNING_RATE, len(categories), load)