Пример #1
0
def test_create_grpc_reponse_nparray():
    user_model = UserObject()
    request = prediction_pb2.SeldonMessage()
    raw_response = np.array([[1, 2, 3]])
    sm = scu.construct_response(user_model, True, request, raw_response)
    assert sm.data.WhichOneof("data_oneof") == "tensor"
    assert sm.data.tensor.values == [1, 2, 3]
Пример #2
0
def route(
    user_model: Any, request: Union[prediction_pb2.SeldonMessage, List, Dict]
) -> Union[prediction_pb2.SeldonMessage, List, Dict]:
    """

    Parameters
    ----------
    user_model
       A Seldon user model
    request
       A SelodonMessage proto
    Returns
    -------

    """
    is_proto = isinstance(request, prediction_pb2.SeldonMessage)

    if hasattr(user_model, "route_rest"):
        logger.warning("route_rest is deprecated. Please use route_raw")
        return user_model.route_rest(request)
    elif hasattr(user_model, "route_grpc"):
        logger.warning("route_grpc is deprecated. Please use route_raw")
        return user_model.route_grpc(request)
    else:
        if hasattr(user_model, "route_raw"):
            try:
                return user_model.route_raw(request)
            except SeldonNotImplementedError:
                pass

        if is_proto:
            (features, meta, datadef,
             data_type) = extract_request_parts(request)
            client_response = client_route(user_model,
                                           features,
                                           datadef.names,
                                           meta=meta)
            if not isinstance(client_response, int):
                raise SeldonMicroserviceException(
                    "Routing response must be int but got " +
                    str(client_response))
            client_response_arr = np.array([[client_response]])
            return construct_response(user_model, False, request,
                                      client_response_arr)
        else:
            (features, meta, datadef,
             data_type) = extract_request_parts_json(request)
            class_names = datadef[
                "names"] if datadef and "names" in datadef else []
            client_response = client_route(user_model,
                                           features,
                                           class_names,
                                           meta=meta)
            if not isinstance(client_response, int):
                raise SeldonMicroserviceException(
                    "Routing response must be int but got " +
                    str(client_response))
            client_response_arr = np.array([[client_response]])
            return construct_response_json(user_model, False, request,
                                           client_response_arr)
Пример #3
0
def test_create_grpc_reponse_ndarray():
    user_model = UserObject()
    request_data = np.array([[5, 6, 7]])
    datadef = scu.array_to_grpc_datadef("ndarray", request_data)
    request = prediction_pb2.SeldonMessage(data=datadef)
    raw_response = np.array([[1, 2, 3]])
    sm = scu.construct_response(user_model, True, request, raw_response)
    assert sm.data.WhichOneof("data_oneof") == "ndarray"
Пример #4
0
def test_create_grpc_response_strdata():
    user_model = UserObject()
    request_data = np.array([[5, 6, 7]])
    datadef = scu.array_to_grpc_datadef("ndarray", request_data)
    request = prediction_pb2.SeldonMessage(data=datadef)
    raw_response = "hello world"
    sm = scu.construct_response(user_model, True, request, raw_response)
    assert sm.data.WhichOneof("data_oneof") == None
    assert len(sm.strData) > 0
Пример #5
0
def transform_output(
        user_model: Any,
        request: Union[prediction_pb2.SeldonMessage, List, Dict]) \
        -> Union[prediction_pb2.SeldonMessage, List, Dict]:
    """

    Parameters
    ----------
    user_model
       User defined class to handle transform input
    request
       The incoming request

    Returns
    -------
       The transformed request

    """
    is_proto = isinstance(request, prediction_pb2.SeldonMessage)

    if hasattr(user_model, "transform_output_rest"):
        logger.warning(
            "transform_input_rest is deprecated. Please use transform_input_raw"
        )
        return user_model.transform_output_rest(request)
    elif hasattr(user_model, "transform_output_grpc"):
        logger.warning(
            "transform_input_grpc is deprecated. Please use transform_input_raw"
        )
        return user_model.transform_output_grpc(request)
    else:
        if hasattr(user_model, "transform_output_raw"):
            try:
                return user_model.transform_output_raw(request)
            except SeldonNotImplementedError:
                pass

        if is_proto:
            (features, meta, datadef,
             data_type) = extract_request_parts(request)
            client_response = client_transform_output(user_model,
                                                      features,
                                                      datadef.names,
                                                      meta=meta)
            return construct_response(user_model, False, request,
                                      client_response)
        else:
            (features, meta, datadef,
             data_type) = extract_request_parts_json(request)
            class_names = datadef[
                "names"] if datadef and "names" in datadef else []
            client_response = client_transform_output(user_model,
                                                      features,
                                                      class_names,
                                                      meta=meta)
            return construct_response_json(user_model, False, request,
                                           client_response)
Пример #6
0
def test_create_grpc_reponse_binary():
    user_model = UserObject()
    request_data = np.array([[5, 6, 7]])
    datadef = scu.array_to_grpc_datadef("tensor", request_data)
    request = prediction_pb2.SeldonMessage(data=datadef)
    raw_response = b"binary"
    sm = scu.construct_response(user_model, True, request, raw_response)
    assert sm.data.WhichOneof("data_oneof") == None
    assert len(sm.strData) == 0
    assert len(sm.binData) > 0
Пример #7
0
def test_create_grpc_response_jsondata():
    user_model = UserObject()
    request_data = np.array([[5, 6, 7]])
    datadef = scu.array_to_grpc_datadef("ndarray", request_data)
    request = prediction_pb2.SeldonMessage(data=datadef)
    raw_response = {"output": "data"}
    sm = scu.construct_response(user_model, True, request, raw_response)
    assert sm.data.WhichOneof("data_oneof") == None
    emptyValue = Value()
    assert sm.jsonData != emptyValue
Пример #8
0
def test_create_grpc_response_customdata():
    user_model = UserObject()
    request_data = np.array([[5, 6, 7]])
    datadef = scu.array_to_grpc_datadef("ndarray", request_data)
    request = prediction_pb2.SeldonMessage(data=datadef)
    raw_response = any_pb2.Any(value=b"testdata")
    sm = scu.construct_response(user_model, True, request, raw_response)
    assert sm.data.WhichOneof("data_oneof") is None
    emptyValue = Value()
    assert sm.customData != emptyValue
def send_feedback(
    user_model: Any,
    request: prediction_pb2.Feedback,
    predictive_unit_id: str,
    seldon_metrics: SeldonMetrics,
) -> prediction_pb2.SeldonMessage:
    """

    Parameters
    ----------
    user_model
       A Seldon user model
    request
       SeldonMesage proto
    predictive_unit_id
       The ID of the enclosing container predictive unit. Will be taken from environment.

    Returns
    -------

    """
    seldon_metrics.update_reward(request.reward)

    if hasattr(user_model, "send_feedback_rest"):
        logger.warning(
            "send_feedback_rest is deprecated. Please use send_feedback_raw")
        request_json = json_format.MessageToJson(request)
        response_json = user_model.send_feedback_rest(request_json)
        return json_to_seldon_message(response_json)
    elif hasattr(user_model, "send_feedback_grpc"):
        logger.warning(
            "send_feedback_grpc is deprecated. Please use send_feedback_raw")
        response_json = user_model.send_feedback_grpc(request)
        return json_to_seldon_message(response_json)
    else:
        if hasattr(user_model, "send_feedback_raw"):
            try:
                return user_model.send_feedback_raw(request)
            except SeldonNotImplementedError:
                pass

        (datadef_request, features, truth,
         reward) = extract_feedback_request_parts(request)
        routing = request.response.meta.routing.get(predictive_unit_id)
        client_response = client_send_feedback(user_model, features,
                                               datadef_request.names, reward,
                                               truth, routing)

        if client_response is None:
            client_response = np.array([])
        else:
            client_response = np.array(client_response)
        return construct_response(user_model, False, request.request,
                                  client_response)
def predict(
    user_model: Any, request: Union[prediction_pb2.SeldonMessage, List, Dict]
) -> Union[prediction_pb2.SeldonMessage, List, Dict]:
    """
    Call the user model to get a prediction and package the response

    Parameters
    ----------
    user_model
       User defined class instance
    request
       The incoming request
    Returns
    -------
      The prediction
    """
    is_proto = isinstance(request, prediction_pb2.SeldonMessage)

    if hasattr(user_model, "predict_rest") and not is_proto:
        logger.warning("predict_rest is deprecated. Please use predict_raw")
        return user_model.predict_rest(request)
    elif hasattr(user_model, "predict_grpc") and is_proto:
        logger.warning("predict_grpc is deprecated. Please use predict_raw")
        return user_model.predict_grpc(request)
    else:
        if hasattr(user_model, "predict_raw"):
            try:
                return user_model.predict_raw(request)
            except SeldonNotImplementedError:
                pass

        if is_proto:
            (features, meta, datadef,
             data_type) = extract_request_parts(request)
            client_response = client_predict(user_model,
                                             features,
                                             datadef.names,
                                             meta=meta)
            return construct_response(user_model, False, request,
                                      client_response)
        else:
            (features, meta, datadef,
             data_type) = extract_request_parts_json(request)
            class_names = datadef[
                "names"] if datadef and "names" in datadef else []
            client_response = client_predict(user_model,
                                             features,
                                             class_names,
                                             meta=meta)
            return construct_response_json(user_model, False, request,
                                           client_response)
Пример #11
0
def test_create_grpc_reponse_text_ndarray():
    user_model = UserObject()
    request_data = np.array([["hello", "world"], ["hello", "another", "world"]])
    datadef = scu.array_to_grpc_datadef("ndarray", request_data)
    request = prediction_pb2.SeldonMessage(data=datadef)
    (features, meta, datadef, data_type) = scu.extract_request_parts(request)
    raw_response = np.array([["hello", "world"], ["here", "another"]])
    sm = scu.construct_response(user_model, True, request, raw_response)
    assert sm.data.WhichOneof("data_oneof") == "ndarray"
    assert type(features[0]) == list
    assert np.array_equal(sm.data.ndarray, raw_response)
    assert datadef == request.data
    assert np.array_equal(features, request_data)
    assert data_type == "data"
def aggregate(
    user_model: Any, request: Union[prediction_pb2.SeldonMessageList, List,
                                    Dict]
) -> Union[prediction_pb2.SeldonMessage, List, Dict]:
    """
    Aggregate a list of payloads

    Parameters
    ----------
    user_model
       A Seldon user model
    request
       SeldonMessage proto

    Returns
    -------
       Aggregated SeldonMessage proto

    """
    is_proto = isinstance(request, prediction_pb2.SeldonMessageList)

    if hasattr(user_model, "aggregate_rest"):
        logger.warning(
            "aggregate_rest is deprecated. Please use aggregate_raw")
        return user_model.aggregate_rest(request)
    elif hasattr(user_model, "aggregate_grpc"):
        logger.warning(
            "aggregate_grpc is deprecated. Please use aggregate_raw")
        return user_model.aggregate_grpc(request)
    else:
        if hasattr(user_model, "aggregate_raw"):
            try:
                return user_model.aggregate_raw(request)
            except SeldonNotImplementedError:
                pass

        if is_proto:
            features_list = []
            names_list = []

            for msg in request.seldonMessages:
                (features, meta, datadef,
                 data_type) = extract_request_parts(msg)
                features_list.append(features)
                names_list.append(datadef.names)

            client_response = client_aggregate(user_model, features_list,
                                               names_list)
            return construct_response(user_model, False,
                                      request.seldonMessages[0],
                                      client_response)
        else:
            features_list = []
            names_list = []

            if isinstance(request, list):
                msgs = request
            elif "seldonMessages" in request and isinstance(
                    request["seldonMessages"], list):
                msgs = request["seldonMessages"]
            else:
                raise SeldonMicroserviceException(
                    f"Invalid request data type: {request}")

            for msg in msgs:
                (features, meta, datadef,
                 data_type) = extract_request_parts_json(msg)
                class_names = datadef[
                    "names"] if datadef and "names" in datadef else []
                features_list.append(features)
                names_list.append(class_names)

            client_response = client_aggregate(user_model, features_list,
                                               names_list)
            return construct_response_json(user_model, False, msgs[0],
                                           client_response)
Пример #13
0
def predict(
    user_model: Any,
    request: Union[prediction_pb2.SeldonMessage, List, Dict, bytes],
    seldon_metrics: SeldonMetrics,
) -> Union[prediction_pb2.SeldonMessage, List, Dict, bytes]:
    """
    Call the user model to get a prediction and package the response

    Parameters
    ----------
    user_model
       User defined class instance
    request
       The incoming request

    Returns
    -------
      The prediction
    """
    # TODO: Find a way to choose predict_rest or predict_grpc when payload is
    # not decoded
    is_proto = isinstance(request, prediction_pb2.SeldonMessage)

    if hasattr(user_model, "predict_rest") and not is_proto:
        logger.warning("predict_rest is deprecated. Please use predict_raw")
        return user_model.predict_rest(request)
    elif hasattr(user_model, "predict_grpc") and is_proto:
        logger.warning("predict_grpc is deprecated. Please use predict_raw")
        return user_model.predict_grpc(request)
    else:
        if hasattr(user_model, "predict_raw"):
            try:
                response = user_model.predict_raw(request)
                handle_raw_custom_metrics(response, seldon_metrics, is_proto,
                                          PREDICT_METRIC_METHOD_TAG)
                return response
            except SeldonNotImplementedError:
                pass

        if is_proto:
            (features, meta, datadef,
             data_type) = extract_request_parts(request)

            client_response = client_predict(user_model,
                                             features,
                                             datadef.names,
                                             meta=meta)

            metrics = client_custom_metrics(
                user_model,
                seldon_metrics,
                PREDICT_METRIC_METHOD_TAG,
                client_response.metrics,
            )

            return construct_response(
                user_model,
                False,
                request,
                client_response.data,
                meta,
                metrics,
                client_response.tags,
            )
        else:
            (features, meta, datadef,
             data_type) = extract_request_parts_json(request)
            class_names = datadef[
                "names"] if datadef and "names" in datadef else []

            client_response = client_predict(user_model,
                                             features,
                                             class_names,
                                             meta=meta)

            metrics = client_custom_metrics(
                user_model,
                seldon_metrics,
                PREDICT_METRIC_METHOD_TAG,
                client_response.metrics,
            )

            return construct_response_json(
                user_model,
                False,
                request,
                client_response.data,
                meta,
                metrics,
                client_response.tags,
            )
Пример #14
0
def aggregate(
    user_model: Any,
    request: Union[prediction_pb2.SeldonMessageList, List, Dict],
    seldon_metrics: SeldonMetrics,
) -> Union[prediction_pb2.SeldonMessage, List, Dict]:
    """
    Aggregate a list of payloads

    Parameters
    ----------
    user_model
       A Seldon user model
    request
       SeldonMessage proto
    seldon_metrics
        A SeldonMetrics instance

    Returns
    -------
       Aggregated SeldonMessage proto

    """
    def merge_meta(meta_list):
        tags = {}
        for meta in meta_list:
            if meta:
                tags.update(meta.get("tags", {}))
        return {"tags": tags}

    def merge_metrics(meta_list, custom_metrics):
        metrics = []
        for meta in meta_list:
            if meta:
                metrics.extend(meta.get("metrics", []))
        metrics.extend(custom_metrics)
        return metrics

    is_proto = isinstance(request, prediction_pb2.SeldonMessageList)

    if hasattr(user_model, "aggregate_rest"):
        logger.warning(
            "aggregate_rest is deprecated. Please use aggregate_raw")
        return user_model.aggregate_rest(request)
    elif hasattr(user_model, "aggregate_grpc"):
        logger.warning(
            "aggregate_grpc is deprecated. Please use aggregate_raw")
        return user_model.aggregate_grpc(request)
    else:
        if hasattr(user_model, "aggregate_raw"):
            try:
                response = user_model.aggregate_raw(request)
                handle_raw_custom_metrics(response, seldon_metrics, is_proto,
                                          AGGREGATE_METRIC_METHOD_TAG)
                return response
            except SeldonNotImplementedError:
                pass

        if is_proto:
            features_list = []
            names_list = []
            meta_list = []

            for msg in request.seldonMessages:
                (features, meta, datadef,
                 data_type) = extract_request_parts(msg)
                features_list.append(features)
                names_list.append(datadef.names)
                meta_list.append(meta)

            client_response = client_aggregate(user_model, features_list,
                                               names_list)

            metrics = client_custom_metrics(
                user_model,
                seldon_metrics,
                AGGREGATE_METRIC_METHOD_TAG,
                client_response.metrics,
            )

            return construct_response(
                user_model,
                False,
                request.seldonMessages[0],
                client_response.data,
                merge_meta(meta_list),
                merge_metrics(meta_list, metrics),
                client_response.tags,
            )
        else:
            features_list = []
            names_list = []

            if isinstance(request, list):
                msgs = request
            elif "seldonMessages" in request and isinstance(
                    request["seldonMessages"], list):
                msgs = request["seldonMessages"]
            else:
                raise SeldonMicroserviceException(
                    f"Invalid request data type: {request}")

            meta_list = []
            for msg in msgs:
                (features, meta, datadef,
                 data_type) = extract_request_parts_json(msg)
                class_names = datadef[
                    "names"] if datadef and "names" in datadef else []
                features_list.append(features)
                names_list.append(class_names)
                meta_list.append(meta)

            client_response = client_aggregate(user_model, features_list,
                                               names_list)

            metrics = client_custom_metrics(
                user_model,
                seldon_metrics,
                AGGREGATE_METRIC_METHOD_TAG,
                client_response.metrics,
            )

            return construct_response_json(
                user_model,
                False,
                msgs[0],
                client_response.data,
                merge_meta(meta_list),
                merge_metrics(meta_list, metrics),
                client_response.tags,
            )
Пример #15
0
def transform_input(
    user_model: Any,
    request: Union[prediction_pb2.SeldonMessage, List, Dict],
    seldon_metrics: SeldonMetrics,
) -> Union[prediction_pb2.SeldonMessage, List, Dict]:
    """

    Parameters
    ----------
    user_model
       User defined class to handle transform input
    request
       The incoming request

    Returns
    -------
       The transformed request

    """
    is_proto = isinstance(request, prediction_pb2.SeldonMessage)

    if hasattr(user_model, "transform_input_rest"):
        logger.warning(
            "transform_input_rest is deprecated. Please use transform_input_raw"
        )
        return user_model.transform_input_rest(request)
    elif hasattr(user_model, "transform_input_grpc"):
        logger.warning(
            "transform_input_grpc is deprecated. Please use transform_input_raw"
        )
        return user_model.transform_input_grpc(request)
    else:
        if hasattr(user_model, "transform_input_raw"):
            try:
                response = user_model.transform_input_raw(request)
                if is_proto:
                    metrics = seldon_message_to_json(response.meta).get(
                        "metrics", [])
                else:
                    metrics = response.get("meta", {}).get("metrics", [])
                seldon_metrics.update(metrics)
                return response
            except SeldonNotImplementedError:
                pass

        if is_proto:
            (features, meta, datadef,
             data_type) = extract_request_parts(request)
            client_response = client_transform_input(user_model,
                                                     features,
                                                     datadef.names,
                                                     meta=meta)

            metrics = client_custom_metrics(user_model)
            if seldon_metrics is not None:
                seldon_metrics.update(metrics)

            return construct_response(user_model, False, request,
                                      client_response, meta, metrics)
        else:
            (features, meta, datadef,
             data_type) = extract_request_parts_json(request)
            class_names = datadef[
                "names"] if datadef and "names" in datadef else []
            client_response = client_transform_input(user_model,
                                                     features,
                                                     class_names,
                                                     meta=meta)

            metrics = client_custom_metrics(user_model)
            if seldon_metrics is not None:
                seldon_metrics.update(metrics)

            return construct_response_json(user_model, False, request,
                                           client_response, meta, metrics)