Пример #1
0
  def __init__(self, gctx, rate=100):
    self.rate = rate

    # *** log ***
    context = zmq.Context()

    # pub
    self.live100 = messaging.pub_sock(context, service_list['live100'].port)
    self.carstate = messaging.pub_sock(context, service_list['carState'].port)
    self.carcontrol = messaging.pub_sock(context, service_list['carControl'].port)
    sendcan = messaging.pub_sock(context, service_list['sendcan'].port)
 
    # sub
    self.thermal = messaging.sub_sock(context, service_list['thermal'].port)
    self.health = messaging.sub_sock(context, service_list['health'].port)
    logcan = messaging.sub_sock(context, service_list['can'].port)
    self.cal = messaging.sub_sock(context, service_list['liveCalibration'].port)
    
    self.CC = car.CarControl.new_message()
    self.CI, self.CP = get_car(logcan, sendcan)
    self.PL = Planner(self.CP)
    self.AM = AlertManager()
    self.LoC = LongControl()
    self.LaC = LatControl()
  
    # write CarParams
    params = Params()
    params.put("CarParams", self.CP.to_bytes())
  
    # fake plan
    self.plan_ts = 0
    self.plan = log.Plan.new_message()
    self.plan.lateralValid = False
    self.plan.longitudinalValid = False
  
    # controls enabled state
    self.enabled = False
    self.last_enable_request = 0
  
    # learned angle offset
    self.angle_offset = 0
  
    # rear view camera state
    self.rear_view_toggle = False
    self.rear_view_allowed = bool(params.get("IsRearViewMirror"))
  
    self.v_cruise_kph = 255
  
    # 0.0 - 1.0
    self.awareness_status = 1.0
  
    self.soft_disable_timer = None
  
    self.overtemp = False
    self.free_space = 1.0
    self.cal_status = Calibration.UNCALIBRATED
    self.cal_perc = 0
  
    self.rk = Ratekeeper(self.rate, print_delay_threshold=2./1000)
Пример #2
0
def controlsd_thread(gctx, rate=100):
  # start the loop
  set_realtime_priority(2)

  context = zmq.Context()

  params = Params()

  # pub
  live100 = messaging.pub_sock(context, service_list['live100'].port)
  carstate = messaging.pub_sock(context, service_list['carState'].port)
  carcontrol = messaging.pub_sock(context, service_list['carControl'].port)
  livempc = messaging.pub_sock(context, service_list['liveMpc'].port)

  passive = params.get("Passive") != "0"
  if not passive:
    sendcan = messaging.pub_sock(context, service_list['sendcan'].port)
  else:
    sendcan = None

  # sub
  thermal = messaging.sub_sock(context, service_list['thermal'].port)
  health = messaging.sub_sock(context, service_list['health'].port)
  cal = messaging.sub_sock(context, service_list['liveCalibration'].port)
  logcan = messaging.sub_sock(context, service_list['can'].port)

  CC = car.CarControl.new_message()

  CI, CP = get_car(logcan, sendcan, 1.0 if passive else None)

  if CI is None:
    if passive:
      return
    else:
      raise Exception("unsupported car")

  if passive:
    CP.safetyModel = car.CarParams.SafetyModels.noOutput

  fcw_enabled = params.get("IsFcwEnabled") == "1"

  PL = Planner(CP, fcw_enabled)
  LoC = LongControl(CP, CI.compute_gb)
  VM = VehicleModel(CP)
  LaC = LatControl(VM)
  AM = AlertManager()

  if not passive:
    AM.add("startup", False)

  # write CarParams
  params.put("CarParams", CP.to_bytes())

  state = State.DISABLED
  soft_disable_timer = 0
  v_cruise_kph = 255
  overtemp = False
  free_space = False
  cal_status = Calibration.UNCALIBRATED
  rear_view_toggle = False
  rear_view_allowed = params.get("IsRearViewMirror") == "1"

  # 0.0 - 1.0
  awareness_status = 1.

  rk = Ratekeeper(rate, print_delay_threshold=2./1000)

  # learned angle offset
  angle_offset = 1.5  # Default model bias
  calibration_params = params.get("CalibrationParams")
  if calibration_params:
    try:
      calibration_params = json.loads(calibration_params)
      angle_offset = calibration_params["angle_offset"]
    except (ValueError, KeyError):
      pass

  prof = Profiler()

  while 1:

    prof.reset()  # avoid memory leak

    # sample data and compute car events
    CS, events, cal_status, overtemp, free_space = data_sample(CI, CC, thermal, health, cal, cal_status,
                                                               overtemp, free_space)
    prof.checkpoint("Sample")

    # define plan
    plan, plan_ts = calc_plan(CS, events, PL, LoC, v_cruise_kph, awareness_status)
    prof.checkpoint("Plan")

    if not passive:
      # update control state
      state, soft_disable_timer, v_cruise_kph = state_transition(CS, CP, state, events, soft_disable_timer, v_cruise_kph, AM)
      prof.checkpoint("State transition")

    # compute actuators
    actuators, v_cruise_kph, awareness_status, angle_offset, rear_view_toggle = state_control(plan, CS, CP, state, events, v_cruise_kph,
                                                                            AM, rk, awareness_status, PL, LaC, LoC, VM, angle_offset,
                                                                            rear_view_allowed, rear_view_toggle)
    prof.checkpoint("State Control")

    # publish data
    CC = data_send(plan, plan_ts, CS, CI, CP, state, events, actuators, v_cruise_kph,
                   rk, carstate, carcontrol, live100, livempc, AM, rear_view_allowed,
                   rear_view_toggle, awareness_status, LaC, LoC, angle_offset, passive)
    prof.checkpoint("Sent")

    # *** run loop at fixed rate ***
    if rk.keep_time():
      prof.display()
Пример #3
0
def controlsd_thread(gctx=None, rate=100):
    gc.disable()

    # start the loop
    set_realtime_priority(3)

    context = zmq.Context()
    params = Params()

    # Pub Sockets
    live100 = messaging.pub_sock(context, service_list['live100'].port)
    carstate = messaging.pub_sock(context, service_list['carState'].port)
    carcontrol = messaging.pub_sock(context, service_list['carControl'].port)

    is_metric = params.get("IsMetric") == "1"
    passive = params.get("Passive") != "0"

    # No sendcan if passive
    if not passive:
        sendcan = messaging.pub_sock(context, service_list['sendcan'].port)
    else:
        sendcan = None

    # Sub sockets
    poller = zmq.Poller()
    thermal = messaging.sub_sock(context,
                                 service_list['thermal'].port,
                                 conflate=True,
                                 poller=poller)
    health = messaging.sub_sock(context,
                                service_list['health'].port,
                                conflate=True,
                                poller=poller)
    cal = messaging.sub_sock(context,
                             service_list['liveCalibration'].port,
                             conflate=True,
                             poller=poller)
    driver_monitor = messaging.sub_sock(context,
                                        service_list['driverMonitoring'].port,
                                        conflate=True,
                                        poller=poller)
    plan_sock = messaging.sub_sock(context,
                                   service_list['plan'].port,
                                   conflate=True,
                                   poller=poller)
    path_plan_sock = messaging.sub_sock(context,
                                        service_list['pathPlan'].port,
                                        conflate=True,
                                        poller=poller)
    logcan = messaging.sub_sock(context, service_list['can'].port)

    CC = car.CarControl.new_message()
    CI, CP = get_car(logcan, sendcan, 1.0 if passive else None)

    if CI is None:
        raise Exception("unsupported car")

    # if stock camera is connected, then force passive behavior
    if not CP.enableCamera:
        passive = True
        sendcan = None

    if passive:
        CP.safetyModel = car.CarParams.SafetyModels.noOutput

    LoC = LongControl(CP, CI.compute_gb)
    VM = VehicleModel(CP)
    LaC = LatControl(CP)
    AM = AlertManager()
    driver_status = DriverStatus()

    if not passive:
        AM.add("startup", False)

    # Write CarParams for radard and boardd safety mode
    params.put("CarParams", CP.to_bytes())
    params.put("LongitudinalControl",
               "1" if CP.openpilotLongitudinalControl else "0")

    state = State.disabled
    soft_disable_timer = 0
    v_cruise_kph = 255
    v_cruise_kph_last = 0
    overtemp = False
    free_space = False
    cal_status = Calibration.INVALID
    cal_perc = 0
    mismatch_counter = 0
    low_battery = False

    plan = messaging.new_message()
    plan.init('plan')
    path_plan = messaging.new_message()
    path_plan.init('pathPlan')

    rk = Ratekeeper(rate, print_delay_threshold=2. / 1000)
    controls_params = params.get("ControlsParams")
    # Read angle offset from previous drive
    if controls_params is not None:
        controls_params = json.loads(controls_params)
        angle_offset = controls_params['angle_offset']
    else:
        angle_offset = 0.

    prof = Profiler(False)  # off by default

    while True:
        start_time = int(sec_since_boot() * 1e9)
        prof.checkpoint("Ratekeeper", ignore=True)

        # Sample data and compute car events
        CS, events, cal_status, cal_perc, overtemp, free_space, low_battery, mismatch_counter, plan, path_plan  =\
          data_sample(CI, CC, plan_sock, path_plan_sock, thermal, cal, health, driver_monitor,
                      poller, cal_status, cal_perc, overtemp, free_space, low_battery, driver_status,
                      state, mismatch_counter, params, plan, path_plan)
        prof.checkpoint("Sample")

        path_plan_age = (start_time - path_plan.logMonoTime) / 1e9
        plan_age = (start_time - plan.logMonoTime) / 1e9
        if not path_plan.pathPlan.valid or plan_age > 0.5 or path_plan_age > 0.5:
            events.append(
                create_event('plannerError', [ET.NO_ENTRY, ET.SOFT_DISABLE]))
        events += list(plan.plan.events)

        # Only allow engagement with brake pressed when stopped behind another stopped car
        if CS.brakePressed and plan.plan.vTargetFuture >= STARTING_TARGET_SPEED and not CP.radarOffCan and CS.vEgo < 0.3:
            events.append(
                create_event('noTarget', [ET.NO_ENTRY, ET.IMMEDIATE_DISABLE]))

        if not passive:
            # update control state
            state, soft_disable_timer, v_cruise_kph, v_cruise_kph_last = \
              state_transition(CS, CP, state, events, soft_disable_timer, v_cruise_kph, AM)
            prof.checkpoint("State transition")

        # Compute actuators (runs PID loops and lateral MPC)
        actuators, v_cruise_kph, driver_status, angle_offset, v_acc, a_acc = \
          state_control(plan.plan, path_plan.pathPlan, CS, CP, state, events, v_cruise_kph,
                        v_cruise_kph_last, AM, rk, driver_status,
                        LaC, LoC, VM, angle_offset, passive, is_metric, cal_perc)

        prof.checkpoint("State Control")

        # Publish data
        CC = data_send(plan, path_plan, CS, CI, CP, VM, state, events,
                       actuators, v_cruise_kph, rk, carstate, carcontrol,
                       live100, AM, driver_status, LaC, LoC, angle_offset,
                       passive, start_time, params, v_acc, a_acc)
        prof.checkpoint("Sent")

        rk.keep_time()  # Run at 100Hz
        prof.display()
Пример #4
0
def controlsd_thread(gctx=None, rate=100, default_bias=0.):
    gc.disable()

    # start the loop
    set_realtime_priority(3)

    context = zmq.Context()
    params = Params()

    # pub
    live100 = messaging.pub_sock(context, service_list['live100'].port)
    carstate = messaging.pub_sock(context, service_list['carState'].port)
    carcontrol = messaging.pub_sock(context, service_list['carControl'].port)
    livempc = messaging.pub_sock(context, service_list['liveMpc'].port)

    is_metric = params.get("IsMetric") == "1"
    passive = params.get("Passive") != "0"
    if not passive:
        while 1:
            try:
                sendcan = messaging.pub_sock(context,
                                             service_list['sendcan'].port)
                break
            except zmq.error.ZMQError:
                kill_defaultd()
    else:
        sendcan = None

    # sub
    poller = zmq.Poller()
    thermal = messaging.sub_sock(context,
                                 service_list['thermal'].port,
                                 conflate=True,
                                 poller=poller)
    health = messaging.sub_sock(context,
                                service_list['health'].port,
                                conflate=True,
                                poller=poller)
    cal = messaging.sub_sock(context,
                             service_list['liveCalibration'].port,
                             conflate=True,
                             poller=poller)
    driver_monitor = messaging.sub_sock(context,
                                        service_list['driverMonitoring'].port,
                                        conflate=True,
                                        poller=poller)
    gps_location = messaging.sub_sock(context,
                                      service_list['gpsLocationExternal'].port,
                                      conflate=True,
                                      poller=poller)

    logcan = messaging.sub_sock(context, service_list['can'].port)

    CC = car.CarControl.new_message()

    CI, CP = get_car(logcan, sendcan, 1.0 if passive else None)

    if CI is None:
        raise Exception("unsupported car")

    # if stock camera is connected, then force passive behavior
    if not CP.enableCamera:
        passive = True
        sendcan = None

    if passive:
        CP.safetyModel = car.CarParams.SafetyModels.noOutput

    fcw_enabled = params.get("IsFcwEnabled") == "1"
    geofence = None

    PL = Planner(CP, fcw_enabled)
    LoC = LongControl(CP, CI.compute_gb)
    VM = VehicleModel(CP)
    LaC = LatControl(VM)
    AM = AlertManager()
    driver_status = DriverStatus()

    if not passive:
        AM.add("startup", False)

    # write CarParams
    params.put("CarParams", CP.to_bytes())

    state = State.disabled
    soft_disable_timer = 0
    v_cruise_kph = 255
    v_cruise_kph_last = 0
    overtemp = False
    free_space = False
    cal_status = Calibration.INVALID
    cal_perc = 0
    mismatch_counter = 0
    low_battery = False

    rk = Ratekeeper(rate, print_delay_threshold=2. / 1000)

    # learned angle offset
    angle_offset = default_bias
    calibration_params = params.get("CalibrationParams")
    if calibration_params:
        try:
            calibration_params = json.loads(calibration_params)
            angle_offset = calibration_params["angle_offset2"]
        except (ValueError, KeyError):
            pass

    prof = Profiler(False)  # off by default

    while 1:

        prof.checkpoint("Ratekeeper", ignore=True)

        # sample data and compute car events
        CS, events, cal_status, cal_perc, overtemp, free_space, low_battery, mismatch_counter = data_sample(
            CI, CC, thermal, cal, health, driver_monitor, gps_location, poller,
            cal_status, cal_perc, overtemp, free_space, low_battery,
            driver_status, geofence, state, mismatch_counter, params)
        prof.checkpoint("Sample")

        # define plan
        plan, plan_ts = calc_plan(CS, CP, events, PL, LaC, LoC, v_cruise_kph,
                                  driver_status, geofence)
        prof.checkpoint("Plan")

        if not passive:
            # update control state
            state, soft_disable_timer, v_cruise_kph, v_cruise_kph_last = \
              state_transition(CS, CP, state, events, soft_disable_timer, v_cruise_kph, AM)
            prof.checkpoint("State transition")

        # compute actuators
        actuators, v_cruise_kph, driver_status, angle_offset = state_control(
            plan, CS, CP, state, events, v_cruise_kph, v_cruise_kph_last, AM,
            rk, driver_status, PL, LaC, LoC, VM, angle_offset, passive,
            is_metric, cal_perc)
        prof.checkpoint("State Control")

        # publish data
        CC = data_send(PL.perception_state, plan, plan_ts, CS, CI, CP, VM,
                       state, events, actuators, v_cruise_kph, rk, carstate,
                       carcontrol, live100, livempc, AM, driver_status, LaC,
                       LoC, angle_offset, passive)
        prof.checkpoint("Sent")

        # *** run loop at fixed rate ***
        rk.keep_time()

        prof.display()
Пример #5
0
def controlsd_thread(gctx=None, rate=100):
    gc.disable()

    # start the loop
    set_realtime_priority(3)

    ##### AS
    context = zmq.Context()
    live100 = messaging.pub_sock(context, service_list['live100'].port)
    carstate = messaging.pub_sock(context, service_list['carState'].port)
    carcontrol = messaging.pub_sock(context, service_list['carControl'].port)
    carla_socket = context.socket(zmq.PAIR)
    carla_socket.bind("tcp://*:5560")

    is_metric = True
    passive = True
    ##### AS

    # No sendcan if passive
    if not passive:
        sendcan = messaging.pub_sock(context, service_list['sendcan'].port)
    else:
        sendcan = None

    # Sub sockets
    poller = zmq.Poller()
    #thermal = messaging.sub_sock(context, service_list['thermal'].port, conflate=True, poller=poller)
    #health = messaging.sub_sock(context, service_list['health'].port, conflate=True, poller=poller)
    cal = messaging.sub_sock(context,
                             service_list['liveCalibration'].port,
                             conflate=True,
                             poller=poller)
    #driver_monitor = messaging.sub_sock(context, service_list['driverMonitoring'].port, conflate=True, poller=poller)
    plan_sock = messaging.sub_sock(context,
                                   service_list['plan'].port,
                                   conflate=True,
                                   poller=poller)
    path_plan_sock = messaging.sub_sock(context,
                                        service_list['pathPlan'].port,
                                        conflate=True,
                                        poller=poller)
    #logcan = messaging.sub_sock(context, service_list['can'].port)

    CC = car.CarControl.new_message()
    CP = ToyotaInterface.get_params("TOYOTA PRIUS 2017", {})
    CP.steerRatio = 1.0
    CI = ToyotaInterface(CP, sendcan)

    if CI is None:
        raise Exception("unsupported car")

    # if stock camera is connected, then force passive behavior
    if not CP.enableCamera:
        passive = True
        sendcan = None

    if passive:
        CP.safetyModel = car.CarParams.SafetyModels.noOutput

    LoC = LongControl(CP, CI.compute_gb)
    VM = VehicleModel(CP)
    LaC = LatControl(CP)
    AM = AlertManager()

    if not passive:
        AM.add("startup", False)

    state = State.enabled
    soft_disable_timer = 0
    v_cruise_kph = 50  ##### !!! change
    v_cruise_kph_last = 0  ##### !! change
    cal_status = Calibration.CALIBRATED
    cal_perc = 0

    plan = messaging.new_message()
    plan.init('plan')
    path_plan = messaging.new_message()
    path_plan.init('pathPlan')

    rk = Ratekeeper(rate, print_delay_threshold=2. / 1000)
    angle_offset = 0.

    prof = Profiler(False)  # off by default

    startup = True  ##### AS
    while True:
        start_time = int(sec_since_boot() * 1e9)
        prof.checkpoint("Ratekeeper", ignore=True)
        if cal_status != Calibration.CALIBRATED:
            assert (1 == 0), 'Got uncalibrated for some reason'

        stuff = recv_array(carla_socket)
        current_vel = float(stuff[0])
        current_steer = float(stuff[1])
        v_cruise_kph = float(stuff[2])

        updateInternalCS(CI.CS, current_vel, current_steer, 0, v_cruise_kph)
        CS = returnNewCS(CI)
        events = list(CS.events)

        ##### AS since we dont do preenabled state
        if startup:
            LaC.reset()
            LoC.reset(v_pid=CS.vEgo)
            v_acc = 0
            a_acc = 0
            AM.process_alerts(0.0)
            startup = False

        ASsend_live100_CS(plan, path_plan, CS, VM, state, events, v_cruise_kph,
                          AM, LaC, LoC, angle_offset, v_acc, a_acc, rk,
                          start_time, live100, carstate)

        cal_status, cal_perc, plan, path_plan  =\
          ASdata_sample(plan_sock, path_plan_sock, cal, poller, cal_status, cal_perc, state, plan, path_plan)
        prof.checkpoint("Sample")

        path_plan_age = (start_time - path_plan.logMonoTime) / 1e9
        plan_age = (start_time - plan.logMonoTime) / 1e9
        if not path_plan.pathPlan.valid or plan_age > 0.5 or path_plan_age > 0.5:
            print 'planner time too long or invalid'
            #events.append(create_event('plannerError', [ET.NO_ENTRY, ET.SOFT_DISABLE]))
        events += list(plan.plan.events)

        # Only allow engagement with brake pressed when stopped behind another stopped car
        #if CS.brakePressed and plan.plan.vTargetFuture >= STARTING_TARGET_SPEED and not CP.radarOffCan and CS.vEgo < 0.3:
        #  events.append(create_event('noTarget', [ET.NO_ENTRY, ET.IMMEDIATE_DISABLE]))

        if not passive:
            # update control state
            state, soft_disable_timer, v_cruise_kph, v_cruise_kph_last = \
              state_transition(CS, CP, state, events, soft_disable_timer, v_cruise_kph, AM)
            prof.checkpoint("State transition")

        v_acc, a_acc = \
          ASstate_control(plan.plan, path_plan.pathPlan, CS, CP, state, events, v_cruise_kph,
                        v_cruise_kph_last, AM, rk,
                        LaC, LoC, VM, angle_offset, passive, is_metric, cal_perc)
        prof.checkpoint("State Control")

        # Publish data
        yawrate = VM.yaw_rate(math.radians(path_plan.pathPlan.angleSteers),
                              v_acc)
        beta = (VM.aR + VM.aF * VM.chi -
                VM.m * v_acc**2 / VM.cF / VM.cR / VM.l *
                (VM.cF * VM.aF - VM.cR * VM.aR * VM.chi))
        beta *= yawrate / (1 - VM.chi) / v_acc
        send_array(
            carla_socket,
            np.array([
                v_acc, path_plan.pathPlan.angleSteers,
                -3.3 * math.degrees(yawrate), -3.3 * math.degrees(beta)
            ]))

        prof.checkpoint("Sent")

        rk.monitor_time()  # Run at 100Hz, no 20 Hz
        prof.display()
Пример #6
0
def controlsd_thread(gctx, rate=100):  #rate in Hz
    # *** log ***
    context = zmq.Context()
    live100 = messaging.pub_sock(context, service_list['live100'].port)
    carstate = messaging.pub_sock(context, service_list['carState'].port)
    carcontrol = messaging.pub_sock(context, service_list['carControl'].port)
    sendcan = messaging.pub_sock(context, service_list['sendcan'].port)

    thermal = messaging.sub_sock(context, service_list['thermal'].port)
    live20 = messaging.sub_sock(context, service_list['live20'].port)
    model = messaging.sub_sock(context, service_list['model'].port)
    health = messaging.sub_sock(context, service_list['health'].port)
    logcan = messaging.sub_sock(context, service_list['can'].port)

    # connects to can and sendcan
    CI = CarInterface()
    VP = CI.getVehicleParams()

    PP = PathPlanner(model)
    AC = AdaptiveCruise(live20)

    AM = AlertManager()

    LoC = LongControl()
    LaC = LatControl()

    # controls enabled state
    enabled = False
    last_enable_request = 0

    # learned angle offset
    angle_offset = 0

    # rear view camera state
    rear_view_toggle = False

    v_cruise_kph = 255

    # 0.0 - 1.0
    awareness_status = 0.0

    soft_disable_timer = None

    # Is cpu temp too high to enable?
    overtemp = False
    free_space = 1.0

    # start the loop
    set_realtime_priority(2)

    rk = Ratekeeper(rate, print_delay_threshold=2. / 1000)
    while 1:
        prof = Profiler()
        cur_time = sec_since_boot()

        # read CAN
        # CS = CI.update()
        CS = car.CarState.new_message()
        CS.vEgo = 13

        for a in messaging.drain_sock(logcan):
            CS.steeringAngle = a.carState.steeringAngle

        # broadcast carState
        cs_send = messaging.new_message()
        cs_send.init('carState')
        cs_send.carState = CS  # copy?
        carstate.send(cs_send.to_bytes())

        prof.checkpoint("CarInterface")

        # did it request to enable?
        enable_request, enable_condition = False, False

        if enabled:
            # gives the user 6 minutes
            # awareness_status -= 1.0/(100*60*6)
            if awareness_status <= 0.:
                # AM.add("driverDistracted", enabled)
                awareness_status = 1.0

        # reset awareness status on steering
        if CS.steeringPressed:
            awareness_status = 1.0

        # handle button presses
        for b in CS.buttonEvents:
            print b

            # reset awareness on any user action
            awareness_status = 1.0

            # button presses for rear view
            if b.type == "leftBlinker" or b.type == "rightBlinker":
                if b.pressed:
                    rear_view_toggle = True
                else:
                    rear_view_toggle = False

            if b.type == "altButton1" and b.pressed:
                rear_view_toggle = not rear_view_toggle

            if not VP.brake_only and enabled and not b.pressed:
                if b.type == "accelCruise":
                    v_cruise_kph = v_cruise_kph - (
                        v_cruise_kph % V_CRUISE_DELTA) + V_CRUISE_DELTA
                elif b.type == "decelCruise":
                    v_cruise_kph = v_cruise_kph - (
                        v_cruise_kph % V_CRUISE_DELTA) - V_CRUISE_DELTA
                v_cruise_kph = clip(v_cruise_kph, V_CRUISE_MIN, V_CRUISE_MAX)

            if not enabled and b.type in ["accelCruise", "decelCruise"
                                          ] and not b.pressed:
                enable_request = True

            # do disable on button down
            if b.type == "cancel" and b.pressed:
                AM.add("disable", enabled)

        # Hack-hack
        if not enabled:
            enable_request = True

        prof.checkpoint("Buttons")

        # *** health checking logic ***
        hh = messaging.recv_sock(health)
        if hh is not None:
            # if the board isn't allowing controls but somehow we are enabled!
            if not hh.health.controlsAllowed and enabled:
                AM.add("controlsMismatch", enabled)

        # *** thermal checking logic ***

        # thermal data, checked every second
        td = messaging.recv_sock(thermal)
        if False and td is not None:
            # Check temperature.
            overtemp = any(t > 950 for t in (td.thermal.cpu0, td.thermal.cpu1,
                                             td.thermal.cpu2, td.thermal.cpu3,
                                             td.thermal.mem, td.thermal.gpu))
            # under 15% of space free
            free_space = td.thermal.freeSpace

        prof.checkpoint("Health")

        # *** getting model logic ***
        PP.update(cur_time, CS.vEgo)

        if rk.frame % 5 == 2:
            # *** run this at 20hz again ***
            angle_offset = learn_angle_offset(enabled, CS.vEgo, angle_offset,
                                              np.asarray(PP.d_poly), LaC.y_des,
                                              CS.steeringPressed)

        # disable if the pedals are pressed while engaged, this is a user disable
        if enabled:
            if CS.gasPressed or CS.brakePressed:
                AM.add("disable", enabled)

        if enable_request:
            # check for pressed pedals
            if CS.gasPressed or CS.brakePressed:
                AM.add("pedalPressed", enabled)
                enable_request = False
            else:
                print "enabled pressed at", cur_time
                last_enable_request = cur_time

            # don't engage with less than 15% free
            if free_space < 0.15:
                AM.add("outOfSpace", enabled)
                enable_request = False

        if VP.brake_only:
            enable_condition = ((cur_time - last_enable_request) <
                                0.2) and CS.cruiseState.enabled
        else:
            enable_condition = enable_request

        if enable_request or enable_condition or enabled:
            # add all alerts from car
            for alert in CS.errors:
                AM.add(alert, enabled)

            if False and AC.dead:
                AM.add("radarCommIssue", enabled)

            if PP.dead:
                AM.add("modelCommIssue", enabled)

            if overtemp:
                AM.add("overheat", enabled)

        prof.checkpoint("Model")

        if enable_condition and not enabled and not AM.alertPresent():
            print "*** enabling controls"

            # beep for enabling
            AM.add("enable", enabled)

            # enable both lateral and longitudinal controls
            enabled = True

            # on activation, let's always set v_cruise from where we are, even if PCM ACC is active
            v_cruise_kph = int(
                round(
                    max(CS.vEgo * CV.MS_TO_KPH * VP.ui_speed_fudge,
                        V_CRUISE_ENABLE_MIN)))

            # 6 minutes driver you're on
            awareness_status = 1.0

            # reset the PID loops
            LaC.reset()
            # start long control at actual speed
            LoC.reset(v_pid=CS.vEgo)

        if VP.brake_only and CS.cruiseState.enabled:
            v_cruise_kph = CS.cruiseState.speed * CV.MS_TO_KPH

        # *** put the adaptive in adaptive cruise control ***
        AC.update(cur_time, CS.vEgo, CS.steeringAngle, LoC.v_pid,
                  awareness_status, VP)

        prof.checkpoint("AdaptiveCruise")

        # *** gas/brake PID loop ***
        final_gas, final_brake = LoC.update(enabled, CS.vEgo, v_cruise_kph,
                                            AC.v_target_lead, AC.a_target,
                                            AC.jerk_factor, VP)

        # *** steering PID loop ***
        final_steer, sat_flag = LaC.update(enabled, CS.vEgo, CS.steeringAngle,
                                           CS.steeringPressed, PP.d_poly,
                                           angle_offset, VP)

        prof.checkpoint("PID")

        # ***** handle alerts ****
        # send a "steering required alert" if saturation count has reached the limit
        if False and sat_flag:
            AM.add("steerSaturated", enabled)

        if enabled and AM.alertShouldDisable():
            print "DISABLING IMMEDIATELY ON ALERT"
            enabled = False

        if enabled and AM.alertShouldSoftDisable():
            if soft_disable_timer is None:
                soft_disable_timer = 3 * rate
            elif soft_disable_timer == 0:
                print "SOFT DISABLING ON ALERT"
                enabled = False
            else:
                soft_disable_timer -= 1
        else:
            soft_disable_timer = None

        # *** push the alerts to current ***
        alert_text_1, alert_text_2, visual_alert, audible_alert = AM.process_alerts(
            cur_time)

        # ***** control the car *****
        CC = car.CarControl.new_message()

        CC.enabled = enabled

        CC.gas = float(final_gas)
        CC.brake = float(final_brake)
        CC.steeringTorque = float(final_steer)

        CC.cruiseControl.override = True
        CC.cruiseControl.cancel = bool(
            (not VP.brake_only)
            or (not enabled and CS.cruiseState.enabled
                ))  # always cancel if we have an interceptor
        CC.cruiseControl.speedOverride = float((LoC.v_pid - .3) if (
            VP.brake_only and final_brake == 0.) else 0.0)
        CC.cruiseControl.accelOverride = float(AC.a_pcm)

        CC.hudControl.setSpeed = float(v_cruise_kph * CV.KPH_TO_MS)
        CC.hudControl.speedVisible = enabled
        CC.hudControl.lanesVisible = enabled
        CC.hudControl.leadVisible = bool(AC.has_lead)

        CC.hudControl.visualAlert = visual_alert
        CC.hudControl.audibleAlert = audible_alert

        # this alert will apply next controls cycle
        #if not CI.apply(CC):
        #  AM.add("controlsFailed", enabled)

        # broadcast carControl
        cc_send = messaging.new_message()
        cc_send.init('carControl')
        cc_send.carControl = CC  # copy?
        #carcontrol.send(cc_send.to_bytes())
        sendcan.send(cc_send.to_bytes())

        prof.checkpoint("CarControl")

        # ***** publish state to logger *****

        # publish controls state at 100Hz
        dat = messaging.new_message()
        dat.init('live100')

        # show rear view camera on phone if in reverse gear or when button is pressed
        dat.live100.rearViewCam = ('reverseGear'
                                   in CS.errors) or rear_view_toggle
        dat.live100.alertText1 = alert_text_1
        dat.live100.alertText2 = alert_text_2
        dat.live100.awarenessStatus = max(awareness_status,
                                          0.0) if enabled else 0.0

        # what packets were used to process
        dat.live100.canMonoTimes = list(CS.canMonoTimes)
        dat.live100.mdMonoTime = PP.logMonoTime
        dat.live100.l20MonoTime = AC.logMonoTime

        # if controls is enabled
        dat.live100.enabled = enabled

        # car state
        dat.live100.vEgo = CS.vEgo
        dat.live100.angleSteers = CS.steeringAngle
        dat.live100.steerOverride = CS.steeringPressed

        # longitudinal control state
        dat.live100.vPid = float(LoC.v_pid)
        dat.live100.vCruise = float(v_cruise_kph)
        dat.live100.upAccelCmd = float(LoC.Up_accel_cmd)
        dat.live100.uiAccelCmd = float(LoC.Ui_accel_cmd)

        # lateral control state
        dat.live100.yActual = float(LaC.y_actual)
        dat.live100.yDes = float(LaC.y_des)
        dat.live100.upSteer = float(LaC.Up_steer)
        dat.live100.uiSteer = float(LaC.Ui_steer)

        # processed radar state, should add a_pcm?
        dat.live100.vTargetLead = float(AC.v_target_lead)
        dat.live100.aTargetMin = float(AC.a_target[0])
        dat.live100.aTargetMax = float(AC.a_target[1])
        dat.live100.jerkFactor = float(AC.jerk_factor)

        # lag
        dat.live100.cumLagMs = -rk.remaining * 1000.

        live100.send(dat.to_bytes())

        prof.checkpoint("Live100")

        # *** run loop at fixed rate ***
        if rk.keep_time():
            prof.display()
Пример #7
0
class Controls(object):
  def __init__(self, gctx, rate=100):
    self.rate = rate

    # *** log ***
    context = zmq.Context()

    # pub
    self.live100 = messaging.pub_sock(context, service_list['live100'].port)
    self.carstate = messaging.pub_sock(context, service_list['carState'].port)
    self.carcontrol = messaging.pub_sock(context, service_list['carControl'].port)
    sendcan = messaging.pub_sock(context, service_list['sendcan'].port)
 
    # sub
    self.thermal = messaging.sub_sock(context, service_list['thermal'].port)
    self.health = messaging.sub_sock(context, service_list['health'].port)
    logcan = messaging.sub_sock(context, service_list['can'].port)
    self.cal = messaging.sub_sock(context, service_list['liveCalibration'].port)
    
    self.CC = car.CarControl.new_message()
    self.CI, self.CP = get_car(logcan, sendcan)
    self.PL = Planner(self.CP)
    self.AM = AlertManager()
    self.LoC = LongControl()
    self.LaC = LatControl()
  
    # write CarParams
    params = Params()
    params.put("CarParams", self.CP.to_bytes())
  
    # fake plan
    self.plan_ts = 0
    self.plan = log.Plan.new_message()
    self.plan.lateralValid = False
    self.plan.longitudinalValid = False
  
    # controls enabled state
    self.enabled = False
    self.last_enable_request = 0
  
    # learned angle offset
    self.angle_offset = 0
  
    # rear view camera state
    self.rear_view_toggle = False
    self.rear_view_allowed = bool(params.get("IsRearViewMirror"))
  
    self.v_cruise_kph = 255
  
    # 0.0 - 1.0
    self.awareness_status = 1.0
  
    self.soft_disable_timer = None
  
    self.overtemp = False
    self.free_space = 1.0
    self.cal_status = Calibration.UNCALIBRATED
    self.cal_perc = 0
  
    self.rk = Ratekeeper(self.rate, print_delay_threshold=2./1000)
 
  def data_sample(self):
    self.prof = Profiler()
    self.cur_time = sec_since_boot()
    # first read can and compute car states
    self.CS = self.CI.update()

    self.prof.checkpoint("CarInterface")

    # *** thermal checking logic ***
    # thermal data, checked every second
    td = messaging.recv_sock(self.thermal)
    if td is not None:
      # Check temperature.
      self.overtemp = any(
          t > 950
          for t in (td.thermal.cpu0, td.thermal.cpu1, td.thermal.cpu2,
                    td.thermal.cpu3, td.thermal.mem, td.thermal.gpu))
      # under 15% of space free
      self.free_space = td.thermal.freeSpace

    # read calibration status
    cal = messaging.recv_sock(self.cal)
    if cal is not None:
      self.cal_status = cal.liveCalibration.calStatus
      self.cal_perc = cal.liveCalibration.calPerc
    

  def state_transition(self):
    pass # for now

  def state_control(self):
    
    # did it request to enable?
    enable_request, enable_condition = False, False

    # reset awareness status on steering
    if self.CS.steeringPressed or not self.enabled:
      self.awareness_status = 1.0
    elif self.enabled:
      # gives the user 6 minutes
      self.awareness_status -= 1.0/(self.rate * AWARENESS_TIME)
      if self.awareness_status <= 0.:
        self.AM.add("driverDistracted", self.enabled)
      elif self.awareness_status <= AWARENESS_PRE_TIME / AWARENESS_TIME and \
           self.awareness_status >= (AWARENESS_PRE_TIME - 0.1) / AWARENESS_TIME:
        self.AM.add("preDriverDistracted", self.enabled)

    # handle button presses
    for b in self.CS.buttonEvents:
      print b

      # button presses for rear view
      if b.type == "leftBlinker" or b.type == "rightBlinker":
        if b.pressed and self.rear_view_allowed:
          self.rear_view_toggle = True
        else:
          self.rear_view_toggle = False

      if b.type == "altButton1" and b.pressed:
        self.rear_view_toggle = not self.rear_view_toggle

      if not self.CP.enableCruise and self.enabled and not b.pressed:
        if b.type == "accelCruise":
          self.v_cruise_kph -= (self.v_cruise_kph % V_CRUISE_DELTA) - V_CRUISE_DELTA
        elif b.type == "decelCruise":
          self.v_cruise_kph -= (self.v_cruise_kph % V_CRUISE_DELTA) + V_CRUISE_DELTA
        self.v_cruise_kph = clip(self.v_cruise_kph, V_CRUISE_MIN, V_CRUISE_MAX)

      if not self.enabled and b.type in ["accelCruise", "decelCruise"] and not b.pressed:
        enable_request = True

      # do disable on button down
      if b.type == "cancel" and b.pressed:
        self.AM.add("disable", self.enabled)

    self.prof.checkpoint("Buttons")
    
    # *** health checking logic ***
    hh = messaging.recv_sock(self.health)
    if hh is not None:
      # if the board isn't allowing controls but somehow we are enabled!
      # TODO: this should be in state transition with a function follower logic
      if not hh.health.controlsAllowed and self.enabled:
        self.AM.add("controlsMismatch", self.enabled)

    # disable if the pedals are pressed while engaged, this is a user disable
    if self.enabled:
      if self.CS.gasPressed or self.CS.brakePressed or not self.CS.cruiseState.available:
        self.AM.add("disable", self.enabled)

      # it can happen that car cruise disables while comma system is enabled: need to
      # keep braking if needed or if the speed is very low
      # TODO: for the Acura, cancellation below 25mph is normal. Issue a non loud alert
      if self.CP.enableCruise and not self.CS.cruiseState.enabled and \
         (self.CC.brake <= 0. or self.CS.vEgo < 0.3):
        self.AM.add("cruiseDisabled", self.enabled)

    if enable_request:
      # check for pressed pedals
      if self.CS.gasPressed or self.CS.brakePressed:
        self.AM.add("pedalPressed", self.enabled)
        enable_request = False
      else:
        print "enabled pressed at", self.cur_time
        self.last_enable_request = self.cur_time

      # don't engage with less than 15% free
      if self.free_space < 0.15:
        self.AM.add("outOfSpace", self.enabled)
        enable_request = False

    if self.CP.enableCruise:
      enable_condition = ((self.cur_time - self.last_enable_request) < 0.2) and self.CS.cruiseState.enabled
    else:
      enable_condition = enable_request
    print "=============="
    print enable_condition

    if self.CP.enableCruise and self.CS.cruiseState.enabled:
      self.v_cruise_kph = self.CS.cruiseState.speed * CV.MS_TO_KPH

    self.prof.checkpoint("AdaptiveCruise")

    # *** what's the plan ***
    plan_packet = self.PL.update(self.CS, self.LoC)
    #print "============"
    #print plan_packet
    self.plan = plan_packet.plan
    self.plan_ts = plan_packet.logMonoTime

    # if user is not responsive to awareness alerts, then start a smooth deceleration
    if self.awareness_status < -0.:
      self.plan.aTargetMax = min(self.plan.aTargetMax, AWARENESS_DECEL)
      self.plan.aTargetMin = min(self.plan.aTargetMin, self.plan.aTargetMax)

    if enable_request or enable_condition or self.enabled:
      # add all alerts from car
      for alert in self.CS.errors:
        self.AM.add(alert, self.enabled)

      if not self.plan.longitudinalValid:
        self.AM.add("radarCommIssue", self.enabled)

      if self.cal_status != Calibration.CALIBRATED:
        if self.cal_status == Calibration.UNCALIBRATED:
          self.AM.add("calibrationInProgress", self.enabled, str(self.cal_perc) + '%')
        else:
          self.AM.add("calibrationInvalid", self.enabled)

      if not self.plan.lateralValid:
        # If the model is not broadcasting, assume that it is because
        # the user has uploaded insufficient data for calibration.
        # Other cases that would trigger this are rare and unactionable by the user.
        self.AM.add("dataNeeded", self.enabled)

      if self.overtemp:
        self.AM.add("overheat", self.enabled)

    
    # *** angle offset learning *** 
    if self.rk.frame % 5 == 2 and self.plan.lateralValid: 
      # *** run this at 20hz again *** 
      self.angle_offset = learn_angle_offset(self.enabled, self.CS.vEgo, self.angle_offset, 
                                             self.plan.dPoly, self.LaC.y_des, self.CS.steeringPressed) 

    # *** gas/brake PID loop *** 
    final_gas, final_brake = self.LoC.update(self.enabled, self.CS.vEgo, self.v_cruise_kph, 
                                        self.plan.vTarget, 
                                        [self.plan.aTargetMin, self.plan.aTargetMax], 
                                        self.plan.jerkFactor, self.CP) 

    # *** steering PID loop *** 
    final_steer, sat_flag = self.LaC.update(self.enabled, self.CS.vEgo, self.CS.steeringAngle, 
                                            self.CS.steeringPressed, self.plan.dPoly, self.angle_offset, self.CP) 
 
    self.prof.checkpoint("PID") 
    
        # ***** handle alerts ****
    # send FCW alert if triggered by planner
    if self.plan.fcw:
      self.AM.add("fcw", self.enabled)

    # send a "steering required alert" if saturation count has reached the limit
    if sat_flag:
      self.AM.add("steerSaturated", self.enabled)

    if self.enabled and self.AM.alertShouldDisable():
      print "DISABLING IMMEDIATELY ON ALERT"
      self.enabled = False

    if self.enabled and self.AM.alertShouldSoftDisable():
      if self.soft_disable_timer is None:
        self.soft_disable_timer = 3 * self.rate
      elif self.soft_disable_timer == 0:
        print "SOFT DISABLING ON ALERT"
        self.enabled = False
      else:
        self.soft_disable_timer -= 1
    else:
      self.soft_disable_timer = None

    if enable_condition and not self.enabled and not self.AM.alertPresent():
      print "*** enabling controls"

      # beep for enabling
      self.AM.add("enable", self.enabled)

      # enable both lateral and longitudinal controls
      self.enabled = True

      # on activation, let's always set v_cruise from where we are, even if PCM ACC is active
      self.v_cruise_kph = int(round(max(self.CS.vEgo * CV.MS_TO_KPH, V_CRUISE_ENABLE_MIN)))

      # 6 minutes driver you're on
      self.awareness_status = 1.0

      # reset the PID loops
      self.LaC.reset()
      # start long control at actual speed
      self.LoC.reset(v_pid = self.CS.vEgo)

    # *** push the alerts to current ***
    # TODO: remove output, store them inside AM class instead
    self.alert_text_1, self.alert_text_2, self.visual_alert, self.audible_alert = self.AM.process_alerts(self.cur_time)
 
    # ***** control the car *****
    self.CC.enabled = self.enabled

    self.CC.gas = float(final_gas)
    self.CC.brake = float(final_brake)
    self.CC.steeringTorque = float(final_steer)

    self.CC.cruiseControl.override = True
    # always cancel if we have an interceptor
    self.CC.cruiseControl.cancel = bool(not self.CP.enableCruise or 
                                        (not self.enabled and self.CS.cruiseState.enabled))

    # brake discount removes a sharp nonlinearity
    brake_discount = (1.0 - clip(final_brake*3., 0.0, 1.0))
    self.CC.cruiseControl.speedOverride = float(max(0.0, ((self.LoC.v_pid - .5) * brake_discount)) if self.CP.enableCruise else 0.0)

    #CC.cruiseControl.accelOverride = float(AC.a_pcm)
    # TODO: fix this
    self.CC.cruiseControl.accelOverride = float(1.0)

    self.CC.hudControl.setSpeed = float(self.v_cruise_kph * CV.KPH_TO_MS)
    self.CC.hudControl.speedVisible = self.enabled
    self.CC.hudControl.lanesVisible = self.enabled
    self.CC.hudControl.leadVisible = self.plan.hasLead
    self.CC.hudControl.visualAlert = self.visual_alert
    self.CC.hudControl.audibleAlert = self.audible_alert

    # TODO: remove it from here and put it in state_transition
    # this alert will apply next controls cycle
    if not self.CI.apply(self.CC):
      self.AM.add("controlsFailed", self.enabled)

  def data_send(self):
    
    # broadcast carControl first
    cc_send = messaging.new_message()
    cc_send.init('carControl')
    cc_send.carControl = copy(self.CC)
    self.carcontrol.send(cc_send.to_bytes())

    self.prof.checkpoint("CarControl")

    # broadcast carState
    cs_send = messaging.new_message()
    cs_send.init('carState')
    cs_send.carState = copy(self.CS)
    self.carstate.send(cs_send.to_bytes())
    
    # ***** publish state to logger *****

    # publish controls state at 100Hz
    dat = messaging.new_message()
    dat.init('live100')

    # show rear view camera on phone if in reverse gear or when button is pressed
    dat.live100.rearViewCam = ('reverseGear' in self.CS.errors and self.rear_view_allowed) or self.rear_view_toggle
    dat.live100.alertText1 = self.alert_text_1
    dat.live100.alertText2 = self.alert_text_2
    dat.live100.awarenessStatus = max(self.awareness_status, 0.0) if self.enabled else 0.0

    # what packets were used to process
    dat.live100.canMonoTimes = list(self.CS.canMonoTimes)
    dat.live100.planMonoTime = self.plan_ts

    # if controls is enabled
    dat.live100.enabled = self.enabled

    # car state
    dat.live100.vEgo = self.CS.vEgo
    dat.live100.angleSteers = self.CS.steeringAngle
    dat.live100.steerOverride = self.CS.steeringPressed

    # longitudinal control state
    dat.live100.vPid = float(self.LoC.v_pid)
    dat.live100.vCruise = float(self.v_cruise_kph)
    dat.live100.upAccelCmd = float(self.LoC.Up_accel_cmd)
    dat.live100.uiAccelCmd = float(self.LoC.Ui_accel_cmd)

    # lateral control state
    dat.live100.yActual = float(self.LaC.y_actual)
    dat.live100.yDes = float(self.LaC.y_des)
    dat.live100.upSteer = float(self.LaC.Up_steer)
    dat.live100.uiSteer = float(self.LaC.Ui_steer)

    # processed radar state, should add a_pcm?
    dat.live100.vTargetLead = float(self.plan.vTarget)
    dat.live100.aTargetMin = float(self.plan.aTargetMin)
    dat.live100.aTargetMax = float(self.plan.aTargetMax)
    dat.live100.jerkFactor = float(self.plan.jerkFactor)

    # log learned angle offset
    dat.live100.angleOffset = float(self.angle_offset)

    # lag
    dat.live100.cumLagMs = -self.rk.remaining*1000.

    self.live100.send(dat.to_bytes())

    self.prof.checkpoint("Live100")

  def wait(self):
    # *** run loop at fixed rate ***
    if self.rk.keep_time():
      self.prof.display()
Пример #8
0
def controlsd_thread(gctx, rate=100):  #rate in Hz
  # *** log ***
  context = zmq.Context()
  live100 = messaging.pub_sock(context, service_list['live100'].port)
  carstate = messaging.pub_sock(context, service_list['carState'].port)
  carcontrol = messaging.pub_sock(context, service_list['carControl'].port)

  thermal = messaging.sub_sock(context, service_list['thermal'].port)
  health = messaging.sub_sock(context, service_list['health'].port)
  plan_sock = messaging.sub_sock(context, service_list['plan'].port)

  logcan = messaging.sub_sock(context, service_list['can'].port)

  # connects to can
  CP = fingerprint(logcan)

  # import the car from the fingerprint
  cloudlog.info("controlsd is importing %s", CP.carName)
  exec('from selfdrive.car.'+CP.carName+'.interface import CarInterface')

  sendcan = messaging.pub_sock(context, service_list['sendcan'].port)
  CI = CarInterface(CP, logcan, sendcan)

  # write CarParams
  Params().put("CarParams", CP.to_bytes())

  AM = AlertManager()

  LoC = LongControl()
  LaC = LatControl()

  # fake plan
  plan = log.Plan.new_message()
  plan.lateralValid = False
  plan.longitudinalValid = False
  last_plan_time = 0

  # controls enabled state
  enabled = False
  last_enable_request = 0

  # learned angle offset
  angle_offset = 0

  # rear view camera state
  rear_view_toggle = False

  v_cruise_kph = 255

  # 0.0 - 1.0
  awareness_status = 0.0

  soft_disable_timer = None

  # Is cpu temp too high to enable?
  overtemp = False
  free_space = 1.0

  # start the loop
  set_realtime_priority(2)

  rk = Ratekeeper(rate, print_delay_threshold=2./1000)
  while 1:
    prof = Profiler()
    cur_time = sec_since_boot()

    # read CAN
    CS = CI.update()

    # broadcast carState
    cs_send = messaging.new_message()
    cs_send.init('carState')
    cs_send.carState = CS    # copy?
    carstate.send(cs_send.to_bytes())

    prof.checkpoint("CarInterface")

    # did it request to enable?
    enable_request, enable_condition = False, False

    if enabled:
      # gives the user 6 minutes
      awareness_status -= 1.0/(100*60*6)
      if awareness_status <= 0.:
        AM.add("driverDistracted", enabled)

    # reset awareness status on steering
    if CS.steeringPressed:
      awareness_status = 1.0

    # handle button presses
    for b in CS.buttonEvents:
      print b

      # reset awareness on any user action
      awareness_status = 1.0

      # button presses for rear view
      if b.type == "leftBlinker" or b.type == "rightBlinker":
        if b.pressed:
          rear_view_toggle = True
        else:
          rear_view_toggle = False

      if b.type == "altButton1" and b.pressed:
        rear_view_toggle = not rear_view_toggle

      if not CP.enableCruise and enabled and not b.pressed:
        if b.type == "accelCruise":
          v_cruise_kph = v_cruise_kph - (v_cruise_kph % V_CRUISE_DELTA) + V_CRUISE_DELTA
        elif b.type == "decelCruise":
          v_cruise_kph = v_cruise_kph - (v_cruise_kph % V_CRUISE_DELTA) - V_CRUISE_DELTA
        v_cruise_kph = clip(v_cruise_kph, V_CRUISE_MIN, V_CRUISE_MAX)

      if not enabled and b.type in ["accelCruise", "decelCruise"] and not b.pressed:
        enable_request = True

      # do disable on button down
      if b.type == "cancel" and b.pressed:
        AM.add("disable", enabled)

    prof.checkpoint("Buttons")

    # *** health checking logic ***
    hh = messaging.recv_sock(health)
    if hh is not None:
      # if the board isn't allowing controls but somehow we are enabled!
      if not hh.health.controlsAllowed and enabled:
        AM.add("controlsMismatch", enabled)

    # *** thermal checking logic ***

    # thermal data, checked every second
    td = messaging.recv_sock(thermal)
    if td is not None:
      # Check temperature.
      overtemp = any(
          t > 950
          for t in (td.thermal.cpu0, td.thermal.cpu1, td.thermal.cpu2,
                    td.thermal.cpu3, td.thermal.mem, td.thermal.gpu))
      # under 15% of space free
      free_space = td.thermal.freeSpace

    prof.checkpoint("Health")

    # disable if the pedals are pressed while engaged, this is a user disable
    if enabled:
      if CS.gasPressed or CS.brakePressed:
        AM.add("disable", enabled)

    if enable_request:
      # check for pressed pedals
      if CS.gasPressed or CS.brakePressed:
        AM.add("pedalPressed", enabled)
        enable_request = False
      else:
        print "enabled pressed at", cur_time
        last_enable_request = cur_time

      # don't engage with less than 15% free
      if free_space < 0.15:
        AM.add("outOfSpace", enabled)
        enable_request = False

    if CP.enableCruise:
      enable_condition = ((cur_time - last_enable_request) < 0.2) and CS.cruiseState.enabled
    else:
      enable_condition = enable_request

    if CP.enableCruise and CS.cruiseState.enabled:
      v_cruise_kph = CS.cruiseState.speed * CV.MS_TO_KPH

    prof.checkpoint("AdaptiveCruise")

    # *** what's the plan ***
    new_plan = messaging.recv_sock(plan_sock)
    if new_plan is not None:
      plan = new_plan.plan
      plan = plan.as_builder()  # plan can change in controls
      last_plan_time = cur_time

    # check plan for timeout
    if cur_time - last_plan_time > 0.5:
      plan.lateralValid = False
      plan.longitudinalValid = False

    # gives 18 seconds before decel begins (w 6 minute timeout)
    if awareness_status < -0.05:
      plan.aTargetMax = min(plan.aTargetMax, -0.2)
      plan.aTargetMin = min(plan.aTargetMin, plan.aTargetMax)

    if enable_request or enable_condition or enabled:
      # add all alerts from car
      for alert in CS.errors:
        AM.add(alert, enabled)

      if not plan.longitudinalValid:
        AM.add("radarCommIssue", enabled)

      if not plan.lateralValid:
        # If the model is not broadcasting, assume that it is because
        # the user has uploaded insufficient data for calibration.
        # Other cases that would trigger this are rare and unactionable by the user.
        AM.add("dataNeeded", enabled)

      if overtemp:
        AM.add("overheat", enabled)

    # *** angle offset learning ***
    if rk.frame % 5 == 2 and plan.lateralValid:
      # *** run this at 20hz again ***
      angle_offset = learn_angle_offset(enabled, CS.vEgo, angle_offset, np.asarray(plan.dPoly), LaC.y_des, CS.steeringPressed)

    # *** gas/brake PID loop ***
    final_gas, final_brake = LoC.update(enabled, CS.vEgo, v_cruise_kph,
                                        plan.vTarget,
                                        [plan.aTargetMin, plan.aTargetMax],
                                        plan.jerkFactor, CP)

    # *** steering PID loop ***
    final_steer, sat_flag = LaC.update(enabled, CS.vEgo, CS.steeringAngle, CS.steeringPressed, plan.dPoly, angle_offset, CP)

    prof.checkpoint("PID")

    # ***** handle alerts ****
    # send a "steering required alert" if saturation count has reached the limit
    if sat_flag:
      AM.add("steerSaturated", enabled)

    if enabled and AM.alertShouldDisable():
      print "DISABLING IMMEDIATELY ON ALERT"
      enabled = False

    if enabled and AM.alertShouldSoftDisable():
      if soft_disable_timer is None:
        soft_disable_timer = 3 * rate
      elif soft_disable_timer == 0:
        print "SOFT DISABLING ON ALERT"
        enabled = False
      else:
        soft_disable_timer -= 1
    else:
      soft_disable_timer = None

    if enable_condition and not enabled and not AM.alertPresent():
      print "*** enabling controls"

      # beep for enabling
      AM.add("enable", enabled)

      # enable both lateral and longitudinal controls
      enabled = True

      # on activation, let's always set v_cruise from where we are, even if PCM ACC is active
      v_cruise_kph = int(round(max(CS.vEgo * CV.MS_TO_KPH, V_CRUISE_ENABLE_MIN)))

      # 6 minutes driver you're on
      awareness_status = 1.0

      # reset the PID loops
      LaC.reset()
      # start long control at actual speed
      LoC.reset(v_pid = CS.vEgo)

    # *** push the alerts to current ***
    alert_text_1, alert_text_2, visual_alert, audible_alert = AM.process_alerts(cur_time)

    # ***** control the car *****
    CC = car.CarControl.new_message()

    CC.enabled = enabled

    CC.gas = float(final_gas)
    CC.brake = float(final_brake)
    CC.steeringTorque = float(final_steer)

    CC.cruiseControl.override = True
    CC.cruiseControl.cancel = bool((not CP.enableCruise) or (not enabled and CS.cruiseState.enabled))    # always cancel if we have an interceptor

    # brake discount removes a sharp nonlinearity
    brake_discount = (1.0 - clip(final_brake*3., 0.0, 1.0))
    CC.cruiseControl.speedOverride = float(max(0.0, ((LoC.v_pid - .5) * brake_discount)) if CP.enableCruise else 0.0)

    #CC.cruiseControl.accelOverride = float(AC.a_pcm)
    # TODO: fix this
    CC.cruiseControl.accelOverride = float(1.0)

    CC.hudControl.setSpeed = float(v_cruise_kph * CV.KPH_TO_MS)
    CC.hudControl.speedVisible = enabled
    CC.hudControl.lanesVisible = enabled
    #CC.hudControl.leadVisible = bool(AC.has_lead)
    # TODO: fix this
    CC.hudControl.leadVisible = False

    CC.hudControl.visualAlert = visual_alert
    CC.hudControl.audibleAlert = audible_alert

    # this alert will apply next controls cycle
    if not CI.apply(CC):
      AM.add("controlsFailed", enabled)

    # broadcast carControl
    cc_send = messaging.new_message()
    cc_send.init('carControl')
    cc_send.carControl = CC    # copy?
    carcontrol.send(cc_send.to_bytes())

    prof.checkpoint("CarControl")

    # ***** publish state to logger *****

    # publish controls state at 100Hz
    dat = messaging.new_message()
    dat.init('live100')

    # show rear view camera on phone if in reverse gear or when button is pressed
    dat.live100.rearViewCam = ('reverseGear' in CS.errors) or rear_view_toggle
    dat.live100.alertText1 = alert_text_1
    dat.live100.alertText2 = alert_text_2
    dat.live100.awarenessStatus = max(awareness_status, 0.0) if enabled else 0.0

    # what packets were used to process
    dat.live100.canMonoTimes = list(CS.canMonoTimes)
    #dat.live100.mdMonoTime = PP.logMonoTime
    #dat.live100.l20MonoTime = AC.logMonoTime

    # if controls is enabled
    dat.live100.enabled = enabled

    # car state
    dat.live100.vEgo = CS.vEgo
    dat.live100.angleSteers = CS.steeringAngle
    dat.live100.steerOverride = CS.steeringPressed

    # longitudinal control state
    dat.live100.vPid = float(LoC.v_pid)
    dat.live100.vCruise = float(v_cruise_kph)
    dat.live100.upAccelCmd = float(LoC.Up_accel_cmd)
    dat.live100.uiAccelCmd = float(LoC.Ui_accel_cmd)

    # lateral control state
    dat.live100.yActual = float(LaC.y_actual)
    dat.live100.yDes = float(LaC.y_des)
    dat.live100.upSteer = float(LaC.Up_steer)
    dat.live100.uiSteer = float(LaC.Ui_steer)

    # processed radar state, should add a_pcm?
    dat.live100.vTargetLead = float(plan.vTarget)
    dat.live100.aTargetMin = float(plan.aTargetMin)
    dat.live100.aTargetMax = float(plan.aTargetMax)
    dat.live100.jerkFactor = float(plan.jerkFactor)

    # lag
    dat.live100.cumLagMs = -rk.remaining*1000.

    live100.send(dat.to_bytes())

    prof.checkpoint("Live100")

    # *** run loop at fixed rate ***
    if rk.keep_time():
      prof.display()
Пример #9
0
def controlsd_thread(gctx=None, rate=100, default_bias=0.):
    gc.disable()

    # start the loop
    set_realtime_priority(3)

    context = zmq.Context()
    params = Params()

    # pub
    live100 = messaging.pub_sock(context, service_list['live100'].port)
    carstate = messaging.pub_sock(context, service_list['carState'].port)
    carcontrol = messaging.pub_sock(context, service_list['carControl'].port)
    livempc = messaging.pub_sock(context, service_list['liveMpc'].port)

    is_metric = params.get("IsMetric") == "1"
    passive = params.get("Passive") != "0"
    if not passive:
        while 1:
            try:
                sendcan = messaging.pub_sock(context,
                                             service_list['sendcan'].port)
                break
            except zmq.error.ZMQError:
                kill_defaultd()
    else:
        sendcan = None

    # sub
    poller = zmq.Poller()
    thermal = messaging.sub_sock(context,
                                 service_list['thermal'].port,
                                 conflate=True,
                                 poller=poller)
    health = messaging.sub_sock(context,
                                service_list['health'].port,
                                conflate=True,
                                poller=poller)
    cal = messaging.sub_sock(context,
                             service_list['liveCalibration'].port,
                             conflate=True,
                             poller=poller)
    driver_monitor = messaging.sub_sock(context,
                                        service_list['driverMonitoring'].port,
                                        conflate=True,
                                        poller=poller)
    gps_location = messaging.sub_sock(context,
                                      service_list['gpsLocationExternal'].port,
                                      conflate=True,
                                      poller=poller)

    logcan = messaging.sub_sock(context, service_list['can'].port)

    CC = car.CarControl.new_message()

    CI, CP = get_car(logcan, sendcan, 1.0 if passive else None)

    if CI is None:
        raise Exception("unsupported car")

    # if stock camera is connected, then force passive behavior
    if not CP.enableCamera:
        passive = True
        sendcan = None

    if passive:
        CP.safetyModel = car.CarParams.SafetyModels.noOutput

    fcw_enabled = params.get("IsFcwEnabled") == "1"
    geofence = None

    PL = Planner(CP, fcw_enabled)
    LoC = LongControl(CP, CI.compute_gb)
    VM = VehicleModel(CP)
    LaC = LatControl(VM)
    AM = AlertManager()
    driver_status = DriverStatus()

    if not passive:
        AM.add("startup", False)

    # write CarParams
    params.put("CarParams", CP.to_bytes())

    state = State.disabled
    soft_disable_timer = 0
    v_cruise_kph = 255
    v_cruise_kph_last = 0
    overtemp = False
    free_space = False
    cal_status = Calibration.INVALID
    cal_perc = 0
    mismatch_counter = 0
    low_battery = False

    rk = Ratekeeper(rate, print_delay_threshold=2. / 1000)

    # learned angle offset
    angle_offset = default_bias
    calibration_params = params.get("CalibrationParams")
    if calibration_params:
        try:
            calibration_params = json.loads(calibration_params)
            angle_offset = calibration_params["angle_offset2"]
        except (ValueError, KeyError):
            pass

    prof = Profiler(False)  # off by default

    # Setup for real-time tuning
    rt_tuning_file = '/data/.openpilot_rtt_params.pkl'
    rtt_params = {}
    last_mod_time = 0

    while 1:

        prof.checkpoint("Ratekeeper", ignore=True)

        # sample data and compute car events
        CS, events, cal_status, cal_perc, overtemp, free_space, low_battery, mismatch_counter = data_sample(
            CI, CC, thermal, cal, health, driver_monitor, gps_location, poller,
            cal_status, cal_perc, overtemp, free_space, low_battery,
            driver_status, geofence, state, mismatch_counter, params)
        prof.checkpoint("Sample")

        # define plan
        plan, plan_ts = calc_plan(CS, CP, events, PL, LaC, LoC, v_cruise_kph,
                                  driver_status, geofence)
        prof.checkpoint("Plan")

        if not passive:
            # update control state
            state, soft_disable_timer, v_cruise_kph, v_cruise_kph_last = \
              state_transition(CS, CP, state, events, soft_disable_timer, v_cruise_kph, AM)
            prof.checkpoint("State transition")

        # compute actuators
        actuators, v_cruise_kph, driver_status, angle_offset = state_control(
            plan, CS, CP, state, events, v_cruise_kph, v_cruise_kph_last, AM,
            rk, driver_status, PL, LaC, LoC, VM, angle_offset, passive,
            is_metric, cal_perc)
        prof.checkpoint("State Control")

        # publish data
        CC = data_send(PL.perception_state, plan, plan_ts, CS, CI, CP, VM,
                       state, events, actuators, v_cruise_kph, rk, carstate,
                       carcontrol, live100, livempc, AM, driver_status, LaC,
                       LoC, angle_offset, passive)
        prof.checkpoint("Sent")

        ######################   Real-Time Tuning Add-on  ########################
        # TODO:  Move this into it's own function to clean things up
        # TODO:  Need to delay until fingerprint, or is this after already?
        # Run this once per second... on frame 29, of course.
        if rk.frame % 100 == 29:
            # Get the last update time of our real-time tuning file
            #print('Real-Time Tuning:  Checking tuning file modification time.')
            try:
                mod_time = os.path.getmtime(rt_tuning_file)
                #print('RTT mod_time:  {0}'.format(mod_time))
            except OSError:
                # File doesn't exist or is inaccessible
                mod_time = None
                print(
                    'Real-Time Tuning:  RT_TUNING_FILE did not exist or was inaccessible.'
                )

            # If rt_tuning_file doesn't exist, then create it from the current CarParams:
            if mod_time is None:
                rtt_params['steerKpBP'] = list(
                    CP.steerKpBP
                )  # Note that the Kp/Ki are lists!  But if you reference them directly they are <capnp list builder []>.. oops.
                rtt_params['steerKpV'] = list(CP.steerKpV)
                rtt_params['steerKiBP'] = list(CP.steerKiBP)
                rtt_params['steerKiV'] = list(CP.steerKiV)
                rtt_params['steerKf'] = CP.steerKf
                # TODO:  Give the option to link the front and rear tire stiffness changes together
                rtt_params['tireStiffnessFront'] = CP.tireStiffnessFront
                rtt_params['tireStiffnessRear'] = CP.tireStiffnessRear
                rtt_params['steerRatio'] = CP.steerRatio
                rtt_params['steerRateCost'] = CP.steerRateCost
                rtt_params['latPidDeadzone'] = 0.0
                rtt_params['steerActuatorDelay'] = CP.steerActuatorDelay
                # rtt_params['Camera Offset'] = PL.PP.cam_offset
                # Write the pickle file
                # TODO:  try/except the open
                with open(rt_tuning_file, "wb") as f_write:
                    pickle.dump(
                        rtt_params, f_write,
                        -1)  # Dump to file with highest protocol (fastest)
                # No need to update next time if we just wrote the file out...
                last_mod_time = os.path.getmtime(rt_tuning_file)
                #print('RTT Last_mod_time:  {0}'.format(last_mod_time))

            # If file exists and has been updated since the last time we read it in
            elif last_mod_time != mod_time:
                print(
                    'Real-Time Tuning:  Reading in the modified tuning file.')
                # Read in parameters from file
                # TODO:  try/except the open
                with open(rt_tuning_file, "rb") as f_read:
                    rtt_params = pickle.load(f_read)
                # Sanity check the data before setting it.. format is [min, max, failsafe]
                #   Failsafe is used if a value is not found or if the value sent is out of the range limits
                rt_data_limits = {
                    'steerKpBP': [0.0, 67.0, 0.0],
                    'steerKpV': [0.0, 1.0, 0.2],
                    'steerKiBP': [0.0, 67.0, 0.0],
                    'steerKiV': [0.0, 1.0, 0.05],
                    'steerKf': [0.0, 0.001, 0.00005],
                    'tireStiffnessFront': [20000, 1000000, 192150],
                    'tireStiffnessRear': [20000, 1000000, 202500],
                    'steerRatio': [8.0, 25.0, 14.0],
                    'steerRateCost': [0.05, 1.0, 0.5],
                    'latPidDeadzone': [0.0, 4.0, 0.0],
                    'steerActuatorDelay': [0.0, 0.5, 0.1]
                    # 'Camera Offset': [ -0.2, 0.2, 0.06 ]
                }
                # Do the checks and set the values
                for key in rt_data_limits:
                    rt_val = rtt_params.get(key)
                    if rt_val is None:
                        # If this key from data limits doesn't exist in our tuning data, then add it as the failsafe
                        # TODO:  Use CP value here instead of failsafe?
                        rtt_params[key] = rt_data_limits[key][2]
                        print(
                            'Real-Time Tuning:  Value did not exist in tuning file, replaced with failsafe.  Key: '
                            + key)
                        continue
                    # If it does exist, then check the values.  First see if it's a list
                    try:
                        # If it's an iterable list...
                        for i, val2 in enumerate(rt_val):
                            # Check each value in the list
                            if (val2 < rt_data_limits[key][0]) or (
                                    val2 > rt_data_limits[key][1]):
                                rt_val[i] = rt_data_limits[key][2]
                                print(
                                    'Real-Time Tuning:  Invalid value replaced!  Key: '
                                    + key)
                    except:
                        # Not interable, compare it and fix if necessary
                        if (rt_val < rt_data_limits[key][0]) or (
                                rt_val > rt_data_limits[key][1]):
                            rt_val = rt_data_limits[key][2]
                            print(
                                'Real-Time Tuning:  Invalid value replaced!  Key: '
                                + key)
                    # Set it back so if anything was fixed we have the updated value
                    rtt_params[key] = rt_val

                # Update CP with the new params
                CP.steerKpBP = rtt_params['steerKpBP']
                CP.steerKpV = rtt_params['steerKpV']
                CP.steerKiBP = rtt_params['steerKiBP']
                CP.steerKiV = rtt_params['steerKiV']
                CP.steerKf = rtt_params['steerKf']
                CP.tireStiffnessFront = rtt_params['tireStiffnessFront']
                CP.tireStiffnessRear = rtt_params['tireStiffnessRear']
                CP.steerRatio = rtt_params['steerRatio']
                CP.steerActuatorDelay = rtt_params['steerActuatorDelay']
                if CP.steerRateCost != rtt_params['steerRateCost']:
                    print(CP.steerRateCost)
                    print(rtt_params['steerRateCost'])
                    CP.steerRateCost = rtt_params['steerRateCost']
                    rt_mpc_flag = True
                    print(
                        'Real-Time Tuning:  CP.steerRateCost changed - Re-initializing lateral MPC.'
                    )
                else:
                    rt_mpc_flag = False
                # TODO:  try/except the open
                # Write the pickle file back so if we fixed any data errors the revised values will show up on the client-side
                with open(rt_tuning_file, "wb") as f_write:
                    pickle.dump(
                        rtt_params, f_write,
                        -1)  # Dump to file with highest protocol (fastest)
                    # Set the last modified time to this write.... we don't need to read back in what we just wrote out
                    # Only set this if we were able to successfully make the write (once the try/except is added)
                    last_mod_time = os.path.getmtime(rt_tuning_file)
                # Make updates in latcontrol, etc.  I'm not sure if this is actually necessary, depends on if the objects are referenced or not.  Anyway, one less thing to debug atm.
                VM.update_rt_params(CP)
                LaC.update_rt_params(VM,
                                     rt_mpc_flag,
                                     deadzone=rtt_params['latPidDeadzone'])
                #PL.PP.update_rt_params(rtt_params['Camera Offset'])
                #print('RTT Last_mod_time:  {0}'.format(last_mod_time))

        ####### END OF REAL-TIME TUNING ADD-ON #######

        # *** run loop at fixed rate ***
        rk.keep_time()

        prof.display()
Пример #10
0
def controlsd_thread(gctx=None, rate=100):
    gc.disable()

    # start the loop
    set_realtime_priority(3)

    ##### AS
    context = zmq.Context()
    live100 = messaging.pub_sock(context, service_list['live100'].port)
    carstate = messaging.pub_sock(context, service_list['carState'].port)
    carcontrol = messaging.pub_sock(context, service_list['carControl'].port)
    carla_socket = context.socket(zmq.PAIR)
    carla_socket.bind("tcp://*:5560")

    is_metric = True
    passive = True
    ##### AS

    # No sendcan if passive
    if not passive:
        sendcan = messaging.pub_sock(context, service_list['sendcan'].port)
    else:
        sendcan = None

    # Sub sockets
    poller = zmq.Poller()
    #thermal = messaging.sub_sock(context, service_list['thermal'].port, conflate=True, poller=poller)
    #health = messaging.sub_sock(context, service_list['health'].port, conflate=True, poller=poller)
    cal = messaging.sub_sock(context,
                             service_list['liveCalibration'].port,
                             conflate=True,
                             poller=poller)
    #driver_monitor = messaging.sub_sock(context, service_list['driverMonitoring'].port, conflate=True, poller=poller)
    plan_sock = messaging.sub_sock(context,
                                   service_list['plan'].port,
                                   conflate=True,
                                   poller=poller)
    path_plan_sock = messaging.sub_sock(context,
                                        service_list['pathPlan'].port,
                                        conflate=True,
                                        poller=poller)
    #logcan = messaging.sub_sock(context, service_list['can'].port)

    CC = car.CarControl.new_message()
    CP = ToyotaInterface.get_params("TOYOTA PRIUS 2017", {})
    CP.steerRatio = 1.0
    CI = ToyotaInterface(CP, sendcan)

    if CI is None:
        raise Exception("unsupported car")

    # if stock camera is connected, then force passive behavior
    if not CP.enableCamera:
        passive = True
        sendcan = None

    if passive:
        CP.safetyModel = car.CarParams.SafetyModels.noOutput

    LoC = LongControl(CP, CI.compute_gb)
    VM = VehicleModel(CP)
    LaC = LatControl(CP)
    AM = AlertManager()

    if not passive:
        AM.add("startup", False)

    state = State.enabled
    soft_disable_timer = 0
    v_cruise_kph = 50  ##### !!! change
    v_cruise_kph_last = 0  ##### !! change
    cal_status = Calibration.INVALID
    cal_perc = 0

    plan = messaging.new_message()
    plan.init('plan')
    path_plan = messaging.new_message()
    path_plan.init('pathPlan')

    rk = Ratekeeper(rate, print_delay_threshold=2. / 1000)
    angle_offset = 0.

    prof = Profiler(False)  # off by default

    startup = True  ##### AS
    while True:
        start_time = int(sec_since_boot() * 1e9)
        prof.checkpoint("Ratekeeper", ignore=True)

        # Sample data and compute car events
        CS, events, cal_status, cal_perc, plan, path_plan  =\
          data_sample(CI, CC, plan_sock, path_plan_sock, cal, poller, cal_status, cal_perc, state, plan, path_plan, v_cruise_kph)
        prof.checkpoint("Sample")

        ##### AS since we dont do preenabled state
        if startup:
            LaC.reset()
            LoC.reset(v_pid=CS.vEgo)
            if cal_status != Calibration.CALIBRATED:
                continue
            startup = False

        path_plan_age = (start_time - path_plan.logMonoTime) / 1e9
        plan_age = (start_time - plan.logMonoTime) / 1e9
        if not path_plan.pathPlan.valid or plan_age > 0.5 or path_plan_age > 0.5:
            print 'planner time too long'
            #events.append(create_event('plannerError', [ET.NO_ENTRY, ET.SOFT_DISABLE]))
        events += list(plan.plan.events)

        # Only allow engagement with brake pressed when stopped behind another stopped car
        #if CS.brakePressed and plan.plan.vTargetFuture >= STARTING_TARGET_SPEED and not CP.radarOffCan and CS.vEgo < 0.3:
        #  events.append(create_event('noTarget', [ET.NO_ENTRY, ET.IMMEDIATE_DISABLE]))

        if not passive:
            # update control state
            state, soft_disable_timer, v_cruise_kph, v_cruise_kph_last = \
              state_transition(CS, CP, state, events, soft_disable_timer, v_cruise_kph, AM)
            prof.checkpoint("State transition")

        # Compute actuators (runs PID loops and lateral MPC)
        actuators, v_cruise_kph, angle_offset, v_acc, a_acc = \
          state_control(plan.plan, path_plan.pathPlan, CS, CP, state, events, v_cruise_kph,
                        v_cruise_kph_last, AM, rk,
                        LaC, LoC, VM, angle_offset, passive, is_metric, cal_perc)

        prof.checkpoint("State Control")

        # Publish data
        CC = data_send(plan, path_plan, CS, CI, CP, VM, state, events,
                       actuators, v_cruise_kph, rk, carstate, carcontrol,
                       live100, AM, LaC, LoC, angle_offset, passive,
                       start_time, v_acc, a_acc, carla_socket)
        prof.checkpoint("Sent")

        rk.keep_time()  # Run at 100Hz, no 20 Hz
        prof.display()