b = ModelBuilder() for var in ["c","p","wp","i","klag","x","wg","plag","xlag","a"]: b.addNode(var) b.setInfluence("xlag","wp",1) b.setInfluence("x","wp",1) b.setInfluence("a","wp",1) b.setInfluence("klag","i",1) b.setInfluence("plag","i",1) b.setInfluence("p","i",1) b.setInfluence("plag","c",1) b.setInfluence("p","c",1) b.setInfluence("wg","c",1) b.setInfluence("wp","c",1) m = b.consume() data = dataset.fromCSV("experiments/kleindata.csv") data = data.makeDiff() data = data.discretise() lincp = NonLinearCPLogicGenerator() cpcode = lincp.generate(m) cc = CPCompiler() runmodel = cc.compileCode(cpcode,data) runmodel.iterations = 10000 result = runmodel.run() g = GnuplotDrawer() g.draw(result) t = TableResultInterpreter() r = t.interprete(m,result.latest()) ltri = LatexTableResultInterpreter(r)
else: newdata.append(d) return newdata b = ModelBuilder() for var in ["f","mbsa2","mbsa7","mbsa8","mbsa9"]: b.addNode(var) b.setLevels(var,["Disagree","Agree"]) #b.setLevels(var,["StronglyDisagree","Disagree","Agree","StronglyAgree"]) b.setInfluence("f","mbsa2",1) b.setInfluence("f","mbsa7",1) b.setInfluence("f","mbsa8",1) b.setInfluence("f","mbsa9",1) m = b.consume() data = dataset.fromCSV("experiments/cnesdata.csv") data = data.discretiseFunc(toTwoLevel) lincp = NonLinearCPLogicGenerator() cpcode = lincp.generate(m) cc = CPCompiler() runmodel = cc.compileCode(cpcode,data) runmodel.iterations = 1000 result = runmodel.run() g = GnuplotDrawer() g.draw(result) t = TableResultInterpreter() r = t.interprete(m,result.latest()) replace = [ ("f","$F$"),