def main():
    rospy.init_node('VideoPublisher', anonymous=True)
    VideoRaw_left = rospy.Publisher('/cam0/image_raw', Image, queue_size=10)
    VideoRaw_right = rospy.Publisher('/cam1/image_raw', Image, queue_size=10)
    cap = cv2.VideoCapture(int(sys.argv[1]))
    cap.set(cv2.CAP_PROP_CONVERT_RGB, False)

    while True:

        ret, frame = cap.read()

        left = frame[:, :, 0]
        right = frame[:, :, 1]

        left_msg = Image()
        left_msg.header.stamp = rospy.Time.from_sec(time.time())
        left_msg.data = left.flatten().tolist()
        left_msg.width = left.shape[1]
        left_msg.height = left.shape[0]
        left_msg.step = left.strides[0]
        left_msg.encoding = 'mono8'
        left_msg.header.frame_id = 'image_rect'

        right_msg = Image()
        right_msg.header.stamp = rospy.Time.from_sec(time.time())
        right_msg.data = right.flatten().tolist()
        right_msg.width = right.shape[1]
        right_msg.height = right.shape[0]
        right_msg.step = right.strides[0]
        right_msg.encoding = 'mono8'
        right_msg.header.frame_id = 'image_rect'

        VideoRaw_left.publish(left_msg)
        VideoRaw_right.publish(right_msg)
        rospy.sleep(0.1)
    def cv_to_imgmsg(self, cvim, encoding="passthrough"):
        """
        Convert an OpenCV :cpp:type:`cv::Mat` type to a ROS sensor_msgs::Image message.

        :param cvim:      An OpenCV :cpp:type:`cv::Mat`
        :param encoding:  The encoding of the image data, one of the following strings:

           * ``"passthrough"``
           * one of the standard strings in sensor_msgs/image_encodings.h

        :rtype:           A sensor_msgs.msg.Image message
        :raises CvBridgeError: when the ``cvim`` has a type that is incompatible with ``encoding``

        If encoding is ``"passthrough"``, then the message has the same encoding as the image's OpenCV type.
        Otherwise desired_encoding must be one of the standard image encodings

        This function returns a sensor_msgs::Image message on success, or raises :exc:`cv_bridge.CvBridgeError` on failure.
        """

        img_msg = Image()
        img_msg.height = cvim.shape[0]
        img_msg.width = cvim.shape[1]
        if len(cvim.shape) < 3:
            cv_type = self.dtype_with_channels_to_cvtype2(cvim.dtype, 1)
        else:
            cv_type = self.dtype_with_channels_to_cvtype2(cvim.dtype, cvim.shape[2])
        if encoding == "passthrough":
            img_msg.encoding = cv_type
        else:
            img_msg.encoding = encoding

        img_msg.data = cvim.tostring()
        img_msg.step = len(img_msg.data) // img_msg.height

        return img_msg
Пример #3
0
def cv2_to_imgmsg(cvim, encoding="passthrough"):
    """
    Convert an OpenCV :cpp:type:`cv::Mat` type to a ROS sensor_msgs::Image message.
    :param cvim:      An OpenCV :cpp:type:`cv::Mat`
    :param encoding:  The encoding of the image data, one of the following strings:
       * ``"passthrough"``
       * one of the standard strings in sensor_msgs/image_encodings.h
    :rtype:           A sensor_msgs.msg.Image message
    :raises CvBridgeError: when the ``cvim`` has a type that is incompatible with ``encoding``
    If encoding is ``"passthrough"``, then the message has the same encoding as the image's OpenCV type.
    Otherwise desired_encoding must be one of the standard image encodings
    This function returns a sensor_msgs::Image message on success, or raises :exc:`cv_bridge.CvBridgeError` on failure.
    """
    import numpy as np
    if not isinstance(cvim, (np.ndarray, np.generic)):
        raise TypeError('Your input type is not a numpy array')
    img_msg = Image()
    img_msg.height = cvim.shape[0]
    img_msg.width = cvim.shape[1]
    cv_type = '8UC3'
    if encoding == "passthrough":
        img_msg.encoding = cv_type
    else:
        img_msg.encoding = encoding
    if cvim.dtype.byteorder == '>':
        img_msg.is_bigendian = True
    img_msg.data = cvim.tostring()
    img_msg.step = len(img_msg.data) // img_msg.height

    return img_msg
Пример #4
0
 def appendMessages(self, stamp, messages):
     if not self._image is None:
         # Build the image message and push it on the message list
         msg = Image()
         msg.header.stamp = stamp
         msg.header.frame_id = self._frameId
         msg.width = self._image.shape[0]
         msg.height = self._image.shape[1]
         if (len(self._image.shape) == 2) or (len(self._image.shape) == 3 and self._image.shape[2] == 1):
             # A gray image
             msg.encoding = '8UC1'
             stepMult = 1
         elif len(self._image.shape) == 3 and self._image.shape[2] == 3:
             # A color image
             msg.encoding = 'rgb8'
             stepMult = 3
         elif len(self._image.shape) == 3 and self._image.shape[2] == 4:
             # A color image
             msg.encoding = 'rgba8'
             stepMult = 3
         else:
             raise RuntimeError("The parsing of images is very simple. " +\
                                "Only 3-channel rgb (rgb8), 4 channel rgba " +\
                                "(rgba8) and 1 channel mono (mono8) are " +\
                                "supported. Got an image with shape " +\
                                "{0}".format(self._image.shape))
         msg.is_bigendian = False
         msg.step = stepMult * msg.width
         msg.data = self._image.flatten().tolist()
         messages.append((self._topic, msg))
Пример #5
0
def CreateMonoBag(imgs,bagname):
    '''Creates a bag file with camera images'''
    bag = rosbag.Bag(bagname, 'w')
    imgs = sorted(imgs)

    try:
        for i in range(len(imgs)):
            print("Adding %s" % imgs[i])
            fp = open( imgs[i], "r" )
            p = ImageFile.Parser()

            rgb_file = imgs[i]
            llim = rgb_file.rfind('/')
            rlim = rgb_file.rfind('.')
            rgb_ext = rgb_file[rlim:]
            msec = rgb_file[llim+1:rlim]
            sec = float(msec) / 1000 # msec to sec

            while 1:
                s = fp.read(1024)
                if not s:
                    break
                p.feed(s)

            im = p.close()

            # Stamp = rospy.rostime.Time.from_sec(time.time())
            Stamp = rospy.rostime.Time.from_sec(sec)
            Img = Image()
            Img.header.stamp = Stamp
            Img.width = im.size[0]
            Img.height = im.size[1]
            Img.encoding = "rgb8"
            Img.header.frame_id = "camera"
            Img_data = [pix for pixdata in im.getdata() for pix in pixdata]
            Img.data = Img_data

            bag.write('camera/rgb/image_color', Img, Stamp)

            #####
            d_file = rgb_file.replace(rgb_ext, '.txt')
            print("Adding %s" % d_file)
            fid = open(d_file, 'r')
            raw = fid.readlines()
            fid.close()
            #depth = numpy.reshape(raw, (im.size[1], im.size[0]))

            Img_depth = Image()
            Img_depth.header.stamp = Stamp
            Img_depth.width = im.size[0]
            Img_depth.height = im.size[1]
            Img_depth.encoding = "rgb8"
            Img_depth.header.frame_id = "camera"
            #Img_data = [pix for pixdata in im.getdata() for pix in pixdata]
            Img_depth.data = raw
            bag.write('camera/depth/image', Img, Stamp)
    finally:
        bag.close()       
Пример #6
0
def CreateStereoBag(left_imgs, right_imgs, bagname):
    '''Creates a bag file containing stereo image pairs'''
    bag = rosbag.Bag(bagname, 'w')

    try:
        for i in range(len(left_imgs)):
            print("Adding %s" % left_imgs[i])
            fp_left = open(left_imgs[i], "r")
            p_left = ImageFile.Parser()

            while 1:
                s = fp_left.read(1024)
                if not s:
                    break
                p_left.feed(s)

            im_left = p_left.close()

            fp_right = open(right_imgs[i], "r")
            print("Adding %s" % right_imgs[i])
            p_right = ImageFile.Parser()

            while 1:
                s = fp_right.read(1024)
                if not s:
                    break
                p_right.feed(s)

            im_right = p_right.close()

            Stamp = roslib.rostime.Time.from_sec(time.time())

            Img_left = Image()
            Img_left.header.stamp = Stamp
            Img_left.width = im_left.size[0]
            Img_left.height = im_left.size[1]
            Img_left.encoding = "rgb8"
            Img_left.header.frame_id = "camera/left"
            Img_left_data = [
                pix for pixdata in im_left.getdata() for pix in pixdata
            ]
            Img_left.data = Img_left_data
            Img_right = Image()
            Img_right.header.stamp = Stamp
            Img_right.width = im_right.size[0]
            Img_right.height = im_right.size[1]
            Img_right.encoding = "rgb8"
            Img_right.header.frame_id = "camera/right"
            Img_right_data = [
                pix for pixdata in im_right.getdata() for pix in pixdata
            ]
            Img_right.data = Img_right_data

            bag.write('camera/left/image_raw', Img_left, Stamp)
            bag.write('camera/right/image_raw', Img_right, Stamp)
    finally:
        bag.close()
Пример #7
0
def CreateStereoBag(left_imgs, right_imgs, bagname):
    '''Creates a bag file containing stereo image pairs'''
    bag =rosbag.Bag(bagname, 'w')

    try:
        for i in range(len(left_imgs)):
            print("Adding %s" % left_imgs[i])
            fp_left = open( left_imgs[i], "r" )
            p_left = ImageFile.Parser()

            while 1:
                s = fp_left.read(1024)
                if not s:
                    break
                p_left.feed(s)

            im_left = p_left.close()

            fp_right = open( right_imgs[i], "r" )
            print("Adding %s" % right_imgs[i])
            p_right = ImageFile.Parser()

            while 1:
                s = fp_right.read(1024)
                if not s:
                    break
                p_right.feed(s)

            im_right = p_right.close()

            Stamp = roslib.rostime.Time.from_sec(time.time())

            Img_left = Image()
            Img_left.header.stamp = Stamp
            Img_left.width = im_left.size[0]
            Img_left.height = im_left.size[1]
            Img_left.encoding = "rgb8"
            Img_left.header.frame_id = "camera/left"
            Img_left_data = [pix for pixdata in im_left.getdata() for pix in pixdata]
            Img_left.data = Img_left_data
            Img_right = Image()
            Img_right.header.stamp = Stamp
            Img_right.width = im_right.size[0]
            Img_right.height = im_right.size[1]
            Img_right.encoding = "rgb8"
            Img_right.header.frame_id = "camera/right"
            Img_right_data = [pix for pixdata in im_right.getdata() for pix in pixdata]
            Img_right.data = Img_right_data

            bag.write('camera/left/image_raw', Img_left, Stamp)
            bag.write('camera/right/image_raw', Img_right, Stamp)
    finally:
        bag.close()
Пример #8
0
    def image_raw_callback(self, msg):
        cv_image = self.bridge.imgmsg_to_cv2(msg, desired_encoding='passthrough')
        cv_image = cv2.cvtColor(cv_image, cv2.COLOR_BGR2RGB)
        # Save a sample image
        if not self.is_saved:
            cv2.imwrite("/usr/src/app/dev_ws/src/semantic_segmentation/dolly.png", cv_image)
            self.is_saved = True
        # cv_image = cv2.resize(cv_image,(960,720))
        h,w,_ = cv_image.shape
        # Perform semantic segmentation
        img_decoded, driveable_decoded = self.seg.process_img_driveable(cv_image,[h,w])
        img_decoded = np.uint8(img_decoded * 255)
        driveable_decoded = np.uint8(driveable_decoded * 255)

        #Warp
        warped = cv2.warpPerspective(driveable_decoded, self.M, self.img_size, flags=cv2.INTER_LINEAR)

        # generate scan_msg
        original_center = np.array([[[w/2,h]]],dtype=np.float32)
        warped_center = cv2.perspectiveTransform(original_center, self.M)[0][0]
        scan_distances, angle_increment = segmented2scan(warped, warped_center)
        # publish topics
        warped_msg = Image()
        warped_msg = self.bridge.cv2_to_imgmsg(warped)
        warped_msg.header.stamp = msg.header.stamp
        warped_msg.encoding = msg.encoding
        
        seg_img = Image()
        img_msg = self.bridge.cv2_to_imgmsg(img_decoded)
        seg_img.header.stamp = msg.header.stamp
        seg_img.encoding = msg.encoding

        scan_msg = LaserScan()

        scan_msg.ranges = scan_distances
        scan_msg.intensities = [0.0]*len(scan_distances)

        scan_msg.header.stamp = msg.header.stamp
        scan_msg.header.frame_id = 'chassis'

        scan_msg.angle_increment = angle_increment
        scan_msg.angle_max = 50*math.pi/180.0
        scan_msg.angle_min = -50*math.pi/180.0
        scan_msg.range_min = 1.0
        scan_msg.range_max = 20.0


        self.seg_publisher_.publish(img_msg)
        self.warp_publisher_.publish(warped_msg)
        if(len(scan_distances) > 50):
            self.scan_publisher_.publish(scan_msg)
Пример #9
0
def _array_to_imgmsg(img_array, encoding):
    assert len(img_array.shape) == 3
    img_msg = Image()
    img_msg.height = img_array.shape[0]
    img_msg.width = img_array.shape[1]
    if encoding == 'passthrough':
        img_msg.encoding = '8UC3'
    else:
        img_msg.encoding = encoding
    if img_array.dtype.byteorder == '>':
        img_msg.is_bigendian = True
    img_msg.data = img_array.tostring()
    img_msg.step = len(img_msg.data) // img_msg.height
    return img_msg
Пример #10
0
    def serialize(self, data):
        msg = Image()
        msg.header.stamp.sec = data.tm.sec
        msg.header.stamp.nanosec = data.tm.nsec
        msg.height = data.height
        msg.width = data.width
        if not data.format:
            msg.encoding = "rgb8"
        else:
            msg.encoding = data.format
        msg.step = 1920
        msg.data = data.pixels

        return OpenRTM_aist.ByteDataStreamBase.SERIALIZE_OK, msg
Пример #11
0
def cv_to_imgmsg(cvim, encoding = "passthrough"):
    try:
        return bridge.cv_to_imgmsg(cvim, encoding)
    except:
        img_msg = Image()
        (img_msg.width, img_msg.height) = cv.GetSize(cvim)
        if encoding == "passthrough":
            img_msg.encoding = bridge.cvtype_to_name[cv.GetElemType(cvim)]
        else:
            img_msg.encoding = encoding
            if encoding_as_cvtype(encoding) != cv.GetElemType(cvim):
                raise CvBridgeError, "invalid encoding"
        img_msg.data = cvim.tostring()
        img_msg.step = len(img_msg.data) / img_msg.height
        return img_msg
Пример #12
0
def airpub():
    pub_left = rospy.Publisher("/gi/simulation/left/image_raw", Image, queue_size=1)
    pub_right=rospy.Publisher("/gi/simulation/right/image_raw", Image, queue_size=1)
    rospy.init_node('airsim_info', anonymous=True)
    rate = rospy.Rate(10) # 10hz

    # connect to the AirSim simulator
    client = airsim.MultirotorClient()
    client.confirmConnection()

    while not rospy.is_shutdown():
        # get camera images from the car
        Imu = client.getImuData()
        responses = client.simGetImages([
            airsim.ImageRequest("front-left", airsim.ImageType.Scene, False, False),
            airsim.ImageRequest("front-right", airsim.ImageType.Scene, False, False)
        ])
        img_dic={}
        for idx, response in enumerate(responses):
            img_rgb_string = response.image_data_uint8
            img_dic[idx]=img_rgb_string
        
        # Populate image message
        msg_left=Image()
        msg_left.header.stamp = rospy.Time.now()
        msg_left.header.frame_id = "frameId"
        msg_left.encoding = "rgb8"
        msg_left.height = 480  # resolution should match values in settings.json
        msg_left.width = 752
        msg_left.data = img_dic[0]
        msg_left.is_bigendian = 0
        msg_left.step = msg_left.width * 3
        msg_right = Image()
        msg_right.header.stamp = rospy.Time.now()
        msg_right.header.frame_id = "frameId"
        msg_right.encoding = "rgb8"
        msg_right.height = 480  # resolution should match values in settings.json
        msg_right.width = 752
        msg_right.data = img_dic[1]
        msg_right.is_bigendian = 0
        msg_right.step = msg_left.width * 3
        # log time and size of published image
        rospy.loginfo(len(response.image_data_uint8))
        # publish image message
        pub_left.publish(msg_left)
        pub_right.publish(msg_right)
        # sleep until next cycle
        rate.sleep()
Пример #13
0
def convert(data):
	width=data.info.width
	height=data.info.height
	pixelList = [0] *width*height
	
	imageMsg=Image()
	imageMsg.header.stamp = rospy.Time.now()
	imageMsg.header.frame_id = '1'
	imageMsg.height = height
	imageMsg.width = width
	imageMsg.encoding = 'mono8'
	imageMsg.is_bigendian = 0
	imageMsg.step = width
	
	for h in range(height):
		for w in range(width):
			if data.data[h*width+w]==-1:
				pixelList[h*width+w] = 150
			elif data.data[h*width+w]==0:
				pixelList[h*width+w] = 0
			elif data.data[h*width+w]==100:
				pixelList[h*width+w] = 255	
			else:
				pixelList[h*width+w]=data.data[h*width+w]
				print 'ERROR'
				
	imageMsg.data = pixelList
	imagePub.publish(imageMsg)
Пример #14
0
def CreateMonoBag(imgs,bagname):
    '''Creates a bag file with camera images'''
    bag =rosbag.Bag(bagname, 'w')

    try:
        for i in range(len(imgs)):
            print("Adding %s" % imgs[i])
            fp = open( imgs[i], "r" )
            p = ImageFile.Parser()

            while 1:
                s = fp.read(1024)
                if not s:
                    break
                p.feed(s)

            im = p.close()

            Stamp = rospy.rostime.Time.from_sec(time.time())
            Img = Image()
            Img.header.stamp = Stamp
            Img.width = im.size[0]
            Img.height = im.size[1]
            Img.encoding = "rgb8"
            Img.header.frame_id = "camera"
            Img_data = [pix for pixdata in im.getdata() for pix in pixdata]
            Img.data = Img_data

            bag.write('camera/image_raw', Img, Stamp)
    finally:
        bag.close()       
Пример #15
0
    def process_frame(self,cam_id,buf,buf_offset,timestamp,framenumber):
        if have_ROS:
            msg = Image()
            msg.header.seq=framenumber
            msg.header.stamp=rospy.Time.from_sec(timestamp)
            msg.header.frame_id = "0"

            npbuf = np.array(buf)
            (height,width) = npbuf.shape

            msg.height = height
            msg.width = width
            msg.encoding = self.encoding
            msg.step = width
            msg.data = npbuf.tostring() # let numpy convert to string

            with self.publisher_lock:
                cam_info = self.camera_info
                cam_info.header.stamp = msg.header.stamp
                cam_info.header.seq = msg.header.seq
                cam_info.header.frame_id = msg.header.frame_id
                cam_info.width = width
                cam_info.height = height

                self.publisher.publish(msg)
                self.publisher_cam_info.publish(cam_info)
        return [],[]
Пример #16
0
    def __init__(self):
        rospy.init_node('image_publish')
        name = sys.argv[1]
        image = cv2.imread(name)
        #cv2.imshow("im", image)
        #cv2.waitKey(5)

        hz = rospy.get_param("~rate", 1)
        frame_id = rospy.get_param("~frame_id", "map")
        use_image = rospy.get_param("~use_image", True)
        rate = rospy.Rate(hz)

        self.ci_in = None
        ci_sub = rospy.Subscriber('camera_info_in', CameraInfo,
                                  self.camera_info_callback, queue_size=1)

        if use_image:
            pub = rospy.Publisher('image', Image, queue_size=1)
        ci_pub = rospy.Publisher('camera_info', CameraInfo, queue_size=1)

        msg = Image()
        msg.header.stamp = rospy.Time.now()
        msg.header.frame_id = frame_id
        msg.encoding = 'bgr8'
        msg.height = image.shape[0]
        msg.width = image.shape[1]
        msg.step = image.shape[1] * 3
        msg.data = image.tostring()
        if use_image:
            pub.publish(msg)

        ci = CameraInfo()
        ci.header = msg.header
        ci.height = msg.height
        ci.width = msg.width
        ci.distortion_model ="plumb_bob"
        # TODO(lucasw) need a way to set these values- have this node
        # subscribe to an input CameraInfo?
        ci.D = [0.0, 0.0, 0.0, 0, 0]
        ci.K = [500.0, 0.0, msg.width/2, 0.0, 500.0, msg.height/2, 0.0, 0.0, 1.0]
        ci.R = [1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0]
        ci.P = [500.0, 0.0, msg.width/2, 0.0, 0.0, 500.0, msg.height/2, 0.0,  0.0, 0.0, 1.0, 0.0]
        # ci_pub.publish(ci)

        # TODO(lwalter) only run this is hz is positive,
        # otherwise wait for input trigger message to publish an image
        while not rospy.is_shutdown():
            if self.ci_in is not None:
                ci = self.ci_in

            msg.header.stamp = rospy.Time.now()
            ci.header = msg.header
            if use_image:
                pub.publish(msg)
            ci_pub.publish(ci)

            if hz <= 0:
                rospy.sleep()
            else:
                rate.sleep()
Пример #17
0
 def publish( self ):
     # Get the image.
     image = self.__videoDeviceProxy.getImageRemote( self.__videoDeviceProxyName );
         
     # Create Image message.
     ImageMessage = Image();
     ImageMessage.header.stamp.secs = image[ 5 ];
     ImageMessage.width = image[ 0 ];
     ImageMessage.height = image[ 1 ];
     ImageMessage.step = image[ 2 ] * image[ 0 ];
     ImageMessage.is_bigendian = False;
     ImageMessage.encoding = 'bgr8';
     ImageMessage.data = image[ 6 ];
     
     self.__imagePublisher.publish( ImageMessage );
     
     # Create CameraInfo message.
     # Data from the calibration phase is hard coded for now.
     CameraInfoMessage = CameraInfo();
     CameraInfoMessage.header.stamp.secs = image[ 5 ];
     CameraInfoMessage.width = image[ 0 ];
     CameraInfoMessage.height = image[ 1 ];
     CameraInfoMessage.D = [ -0.0769218451517258, 0.16183180613612602, 0.0011626049774280595, 0.0018733894100460534, 0.0 ];
     CameraInfoMessage.K = [ 581.090096189648, 0.0, 341.0926325830606, 0.0, 583.0323248080421, 241.02441593704128, 0.0, 0.0, 1.0 ];
     CameraInfoMessage.R = [ 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0 ];
     CameraInfoMessage.P = [ 580.5918359588198, 0.0, 340.76398441334106, 0.0, 0.0, 582.4042541534321, 241.04182225157172, 0.0, 0.0, 0.0, 1.0, 0.0] ;
     CameraInfoMessage.distortion_model = 'plumb_bob';
     
     #CameraInfoMessage.roi.x_offset = self.__ROIXOffset;
     #CameraInfoMessage.roi.y_offset = self.__ROIYOffset;
     #CameraInfoMessage.roi.width = self.__ROIWidth;
     #CameraInfoMessage.roi.height = self.__ROIHeight;
     #CameraInfoMessage.roi.do_rectify = self.__ROIDoRectify;
     
     self.__cameraInfoPublisher.publish( CameraInfoMessage );
Пример #18
0
def createImage(h, w):
    ret = Image()
    ret.height = h
    ret.width = w
    ret.encoding = 'rgb8'
    ret.step = w * 3
    return ret
Пример #19
0
    def publishImage(self, type="color"):
        responses = self.client.simGetImages([
            airsim.ImageRequest("1", airsim.ImageType.Scene, False, False)
        ])  #scene vision image in uncompressed RGB array

        for response in responses:
            img_rgb_string = response.image_data_uint8

        # Populate image message
        msg = Image()
        msg.header.stamp = rospy.Time.now()
        msg.header.frame_id = "frameId"
        msg.encoding = "rgb8"
        msg.height = 360  # resolution should match values in settings.json
        msg.width = 640
        msg.data = img_rgb_string
        msg.is_bigendian = 0
        msg.step = msg.width * 4

        # log time and size of published image
        rospy.loginfo(len(response.image_data_uint8))
        # publish image message
        # msg.data = np.array(cv2.imencode('.jpg', image_np)[1]).tostring()
        self.image_pub.publish(msg)
        # sleep until next cycle
        rospy.Rate(10).sleep()
Пример #20
0
    def run(self):
        self.resume()
        while True:
            with self.state:
                if self.paused:
                    self.state.wait()

            s = rospy.ServiceProxy("return_camera_image", ReturnImages)

            img_data = Image()

            img_data.width = s([]).width
            img_data.height = s([]).height
            img_data.encoding = s([]).encoding
            img_data.data = s([]).data

            bridge = CvBridge()
            cv_image = bridge.imgmsg_to_cv2(img_data, "passthrough")
            resized = cv2.resize(cv_image, (125, 125),
                                 interpolation=cv2.INTER_AREA)
            #cv2.imshow("Image window", resized)

            cv2.imwrite(
                self.image_directory + '/shot_' + str(self.counter) + '.png',
                resized)
            self.counter += 1

            cv2.waitKey(1)
def publishing(pub_image, pub_camera, image, type_of_camera):
    if type_of_camera is 1:
        image.convert(carla.ColorConverter.Depth)
    elif type_of_camera is 2:
        image.convert(carla.ColorConverter.CityScapesPalette)
    array = np.frombuffer(image.raw_data, dtype=np.uint8)
    array = np.reshape(array, (image.height, image.width, 4))
    array = array[:, :, :3]
    array = array[:, :, ::-1]
    img = Image()
    infomsg = CameraInfo()

    img.header.stamp = rospy.Time.now()
    img.header.frame_id = 'base'
    img.height = infomsg.height = image.height
    img.width = infomsg.width = image.width
    img.encoding = "rgb8"
    img.step = img.width * 3 * 1
    st1 = array.tostring()
    img.data = st1

    cx = infomsg.width / 2.0
    cy = infomsg.height / 2.0
    fx = fy = infomsg.width / (2.0 * math.tan(image.fov * math.pi / 360.0))
    infomsg.K = [fx, 0, cx, 0, fy, cy, 0, 0, 1]
    infomsg.P = [fx, 0, cx, 0, 0, fy, cy, 0, 0, 0, 1, 0]
    infomsg.R = [1.0, 0, 0, 0, 1.0, 0, 0, 0, 1.0]
    infomsg.D = [0, 0, 0, 0, 0]
    infomsg.binning_x = 0
    infomsg.binning_y = 0
    infomsg.distortion_model = "plumb_bob"
    infomsg.header = img.header

    pub_image.publish(img)
    pub_camera.publish(infomsg)
Пример #22
0
    def timer_callback(self):
        ret, frame = self.cap.read()
        msg = Image()
        header = Header()
        header.frame_id = str(self.counter)
        header.stamp = self.get_clock().now().to_msg()

        if not ret:
            self.get_logger().warning('Publishing RANDOM IMAGE "%s"' %
                                      str(header.stamp))
            frame = np.random.randint(255, size=(480, 640, 3), dtype=np.uint8)
        if self.stream_video:
            cv2.imshow('frame', frame)
            cv2.waitKey(1)
        frame = cv2.resize(frame,
                           dsize=(64, 64),
                           interpolation=cv2.INTER_CUBIC)
        frame = np.flipud(frame)
        frame = np.fliplr(frame)

        msg.header = header
        msg.height = frame.shape[0]
        msg.width = frame.shape[1]
        msg.encoding = "bgr8"
        value = self.bridge.cv2_to_imgmsg(frame.astype(np.uint8))
        msg.data = value.data
        self.publisher_.publish(msg)
        self.get_logger().info('Publishing Image "%s"' % str(header.stamp))
        self.counter += 1
Пример #23
0
    def main_loop(self):
        img = Image()
        r = rospy.Rate(self.fps)
        while not rospy.is_shutdown():
            image = self.camProxy.getImageRemote(self.nameId)
            stampAL = image[4] + image[5]*1e-6
            #print image[5],  stampAL, "%lf"%(stampAL)
            img.header.stamp = rospy.Time(stampAL)
            img.header.frame_id = self.frame_id
            img.height = image[1]
            img.width = image[0]
            nbLayers = image[2]
            if image[3] == kYUVColorSpace:
                encoding = "mono8"
            elif image[3] == kRGBColorSpace:
                encoding = "rgb8"
            elif image[3] == kBGRColorSpace:
                encoding = "bgr8"
            elif image[3] == kYUV422ColorSpace:
                encoding = "yuv422" # this works only in ROS groovy and later
            else:
                rospy.logerror("Received unknown encoding: {0}".format(image[3]))

            img.encoding = encoding
            img.step = img.width * nbLayers
            img.data = image[6]
            infomsg = self.cim.getCameraInfo()
            infomsg.header = img.header
            self.pub_info_.publish(infomsg)
            self.pub_img_.publish(img)
            r.sleep()


        self.camProxy.unsubscribe(self.nameId)
Пример #24
0
def image_msg(
    pixels: np.ndarray,
    stamp: rospy.rostime.Time,
    dims: tuple,
    encoding: str,
) -> Image:
    """
    Return a ROS image from an RGB NumPy tensor.

    Args:
        pixels: the 3D NumPy tensor to convert to an ROS Image
        stamp: the timestamp to use for the image message
        dims: a tuple of the height and width of the image
        encoding: the encoding to use for the image (e.g., 'rgb8')

    Returns:
        an image with the raw pixel data

    """
    ros_image = Image()
    ros_image.header.stamp = stamp
    ros_image.header.frame_id = "camera"
    ros_image.height = dims[0]
    ros_image.width = dims[1]
    ros_image.encoding = encoding
    ros_image.data = pixels.flatten().tobytes()

    return ros_image
Пример #25
0
    def timer_callback(self):
        """Timer Callback Function
        
        This method captures images and publishes required data in ros 2 topic.
        
        """

        if self.capture.isOpened():
            
            # reads image data
            ret, frame = self.capture.read()

            # processes image data and converts to ros 2 message
            msg = Image()
            msg.header.stamp = Node.get_clock(self).now().to_msg()
            msg.header.frame_id = 'ANI717'
            msg.height = np.shape(frame)[0]
            msg.width = np.shape(frame)[1]
            msg.encoding = "bgr8"
            msg.is_bigendian = False
            msg.step = np.shape(frame)[2] * np.shape(frame)[1]
            msg.data = np.array(frame).tobytes()

            # publishes message
            self.publisher_.publish(msg)
            self.get_logger().info('%d Images Published' % self.i)
        
        # image counter increment
        self.i += 1
        
        return None
Пример #26
0
def post_image(self, component_instance):
    """ Publish the data of the Camera as a ROS-Image message.

    """
    image_local = component_instance.local_data['image']
    if not image_local or image_local == '' or not image_local.image or not component_instance.capturing:
        return # press [Space] key to enable capturing

    parent_name = component_instance.robot_parent.blender_obj.name

    image = Image()
    image.header.stamp = rospy.Time.now()
    image.header.seq = self._seq
    # http://www.ros.org/wiki/geometry/CoordinateFrameConventions#Multi_Robot_Support
    image.header.frame_id = ('/' + parent_name + '/base_image')
    image.height = component_instance.image_height
    image.width = component_instance.image_width
    image.encoding = 'rgba8'
    image.step = image.width * 4
    # NOTE: Blender returns the image as a binary string encoded as RGBA
    # sensor_msgs.msg.Image.image need to be len() friendly
    # TODO patch ros-py3/common_msgs/sensor_msgs/src/sensor_msgs/msg/_Image.py
    # to be C-PyBuffer "aware" ? http://docs.python.org/c-api/buffer.html
    image.data = bytes(image_local.image)
    # RGBA8 -> RGB8 ? (remove alpha channel, save h*w bytes, CPUvore ?)
    # http://wiki.blender.org/index.php/Dev:Source/GameEngine/2.49/VideoTexture
    # http://www.blender.org/documentation/blender_python_api_2_57_release/bge.types.html#bge.types.KX_Camera.useViewport

    for topic in self._topics:
        # publish the message on the correct topic
        if str(topic.name) == str("/" + parent_name + "/" + component_instance.blender_obj.name):
            topic.publish(image)

    self._seq = self._seq + 1
Пример #27
0
    def main_loop(self):
        img = Image()
        while not rospy.is_shutdown():
            #print "getting image..",
            image = self.camProxy.getImageRemote(self.nameId)
            #print "ok"
            # TODO: better time
            img.header.stamp = rospy.Time.now()
            img.header.frame_id = self.frame_id
            img.height = image[1]
            img.width = image[0]
            nbLayers = image[2]
            #colorspace = image[3]
            if image[3] == kYUVColorSpace:
                encoding = "mono8"
            elif image[3] == kRGBColorSpace:
                encoding = "rgb8"
            elif image[3] == kBGRColorSpace:
                encoding = "bgr8"
            else:
                rospy.logerror("Received unknown encoding: {0}".format(
                    image[3]))

            img.encoding = encoding
            img.step = img.width * nbLayers
            img.data = image[6]
            self.info_.width = img.width
            self.info_.height = img.height
            self.info_.header = img.header
            self.pub_img_.publish(img)
            self.pub_info_.publish(self.info_)
            rospy.sleep(0.0001)  # TODO: is this necessary?

        self.camProxy.unsubscribe(self.nameId)
    def detect(self):
        # call detectron2 model
        outputs = self.predictor(self.img)

        # process pointcloud to get 3D position and size
        detections = self.process_points(outputs)

        # publish detection result
        obstacle_array = ObstacleArray()
        obstacle_array.header = self.header
        if self.detect_obj_pub.get_subscription_count() > 0:
            obstacle_array.obstacles = detections
            self.detect_obj_pub.publish(obstacle_array)

        # visualize detection with detectron API
        if self.detect_img_pub.get_subscription_count() > 0:
            v = Visualizer(self.img[:, :, ::-1],
                           MetadataCatalog.get(self.cfg.DATASETS.TRAIN[0]),
                           scale=1)
            out = v.draw_instance_predictions(outputs["instances"].to("cpu"))
            out_img = out.get_image()[:, :, ::-1]
            out_img_msg = Image()
            out_img_msg.header = self.header
            out_img_msg.height = out_img.shape[0]
            out_img_msg.width = out_img.shape[1]
            out_img_msg.encoding = 'rgb8'
            out_img_msg.step = 3 * out_img.shape[1]
            out_img_msg.data = out_img.flatten().tolist()
            self.detect_img_pub.publish(out_img_msg)
def main():
    rospy.init_node('vision_pub_img')

    name = sys.argv[1]
    image = cv2.imread(name)
    #cv2.imshow("im", image)
    #cv2.waitKey(5)

    hz = rospy.get_param("~rate", 1)
    rate = rospy.Rate(hz)

    pub = rospy.Publisher('/camera/rgb/image_raw', Image, queue_size=1)

    msg = Image()
    msg.header.stamp = rospy.Time.now()
    msg.encoding = 'bgr8'
    msg.height = image.shape[0]
    msg.width = image.shape[1]
    msg.step = image.shape[1] * 3
    msg.data = image.tostring()
    pub.publish(msg)

    while not rospy.is_shutdown():
        pub.publish(msg)
        rate.sleep()
Пример #30
0
def numpy_to_imgmsg(image, stamp=None):
    from sensor_msgs.msg import Image
    rosimage = Image()
    rosimage.height = image.shape[0]
    rosimage.width = image.shape[1]
    if image.dtype == np.uint8:
        rosimage.encoding = '8UC%d' % image.shape[2]
        rosimage.step = image.shape[2] * rosimage.width
        rosimage.data = image.ravel().tolist()
    else:
        rosimage.encoding = '32FC%d' % image.shape[2]
        rosimage.step = image.shape[2] * rosimage.width * 4
        rosimage.data = np.array(image.flat, dtype=np.float32).tostring()
    if stamp is not None:
        rosimage.header.stamp = stamp
    return rosimage
Пример #31
0
    def main_loop(self):
        img = Image()
        while not rospy.is_shutdown():
            #print "getting image..",
            image = self.camProxy.getImageRemote(self.nameId)
            #print "ok"
            # TODO: better time
            img.header.stamp = rospy.Time.now()
            img.header.frame_id = self.frame_id
            img.height = image[1]
            img.width = image[0]
            nbLayers = image[2]
            #colorspace = image[3]
            if image[3] == kYUVColorSpace:
                encoding = "mono8"
            elif image[3] == kRGBColorSpace:
                encoding = "rgb8"
            elif image[3] == kBGRColorSpace:
                encoding = "bgr8"
            else:
                rospy.logerror("Received unknown encoding: {0}".format(image[3]))

            img.encoding = encoding
            img.step = img.width * nbLayers
            img.data = image[6]
            self.info_.width = img.width
            self.info_.height = img.height
            self.info_.header = img.header
            self.pub_img_.publish(img)
            self.pub_info_.publish(self.info_)
            rospy.sleep(0.0001)# TODO: is this necessary?


        self.camProxy.unsubscribe(self.nameId)
Пример #32
0
def camera_node():
    cap = cv2.VideoCapture(Configs.video_path)
    fps = cap.get(cv2.CAP_PROP_FPS)
    rospy.init_node('camera', anonymous=True)
    pub = rospy.Publisher('/camera_image', Image, queue_size=10)
    rate = rospy.Rate(Configs.camera_rate)  # how many in one minute
    i = 0
    while not rospy.is_shutdown():
        try:
            ret, frame = cap.read()
            i += 1
            if not ret and Configs.video_start:
                cap = cv2.VideoCapture(Configs.video_path)
                print("*************** Restart ****************")
                i = 0
                time.sleep(2)
                continue
            image_temp = Image()
            header = Header(stamp=rospy.Time.now())
            header.frame_id = 'camera'
            image_temp.height = frame.shape[0]
            image_temp.width = frame.shape[1]
            image_temp.encoding = 'bgr8'
            image_temp.data = frame.tostring()
            image_temp.header = header
            image_temp.step = frame.shape[1] * 3
            pub.publish(image_temp)
            rate.sleep()
            print("Frame " + str(i) + ", Time " + str(int(i / fps)) +
                  " s, Image: " + str(frame.shape[0]) + "*" + str(frame.shape[1]))
        except Exception as ex:
            print(ex)
Пример #33
0
def camera_setting(index, image, camera, lidar_obj, f, camera_name, bag, rate):
    camera_image = Image()
    camera_image.header.frame_id = "/base_link"
    camera_image.header.stamp.secs = int(camera.timestamps[index])
    camera_image.header.stamp.nsecs = int((camera.timestamps[index] - camera_image.header.stamp.secs) * (10**9))
    camera_image.height = image.height
    camera_image.width = image.width
    camera_image.encoding = "rgb8"

    #original image
    ##########
    camera_image.data = np.array(image).tostring()
    ##########

    #distances projection image
    ###########
    #camera_image.data = np.array(distances_projection(image, lidar_obj.data[index], camera.poses[index], camera.intrinsics)).tostring()
    ##########

    #semantic segmentation projection image
    ##########
    #camera_image.data = np.array(semantic_segmentation_projection(image, lidar_obj.data[index], camera.poses[index], camera.intrinsics, f.semseg[index])).tostring()
    #tmp_img = semantic_segmentation_projection(image, lidar_obj.data[index], camera.poses[index], camera.intrinsics, f.semseg[index])
    #camera_image.data = np.array(tmp_img).tostring()
    ##########

    topic_name = "/camera_image/" + camera_name
    bag.write(topic_name, camera_image, camera_image.header.stamp)
    rate.sleep()
Пример #34
0
def applyDepthMask(self, image_msg, mask_msg, blur):
    # height and width
    height = image_msg.height
    width = image_msg.width
    # get images
    image_raw = np.fromstring(image_msg.data, np.uint8)
    image_blur = np.full((height * width * 3, 1), 225)
    mask = np.fromstring(mask_msg.data, np.uint8)
    # reshape arrrays (fromstring) to matrices
    mask = mask.reshape(height * width, 1)
    image_raw = image_raw.reshape(height * width * 3, 1)
    # for index i in images,
    # select image_raw[i] when mask[i] true
    # select image_blur[i] when mask[i] false
    image_masked = np.empty(image_raw.shape)
    for i in range(3):
        image_masked[i::3] = np.where(mask, image_raw[i::3], image_blur[i::3])


    # create sensor_msgs image
    image_msg_out = Image()
    image_msg_out.header.stamp = image_msg.header.stamp
    image_msg_out.header.frame_id = image_msg.header.frame_id
    image_msg_out.height = image_msg.height
    image_msg_out.width = image_msg.width
    image_msg_out.encoding = image_msg.encoding
    image_msg_out.is_bigendian = image_msg.is_bigendian
    image_msg_out.step = image_msg.step
    image_msg_out.data = list(image_masked)

    # result
    return image_msg_out
Пример #35
0
    def timer_callback(self):
        global logmul
        global maxsize
        global datacount

        if self._datasize > maxsize:
            print("finish")
            self.destroy_node()
            return

        msg = Image()

        if self._datasize < 300:
            msg.height = 1
        else:
            msg.height = 100
        msg.width = int(self._datasize/msg.height/3)
        msg.encoding = "rgb8"
        msg.step = 1920
        msg.data = b" "*(msg.height*msg.width*3)

        tm = time.time()
        tm_f = float(tm - int(tm))
        msg.header.stamp.sec = int(float(tm) - float(tm_f))
        msg.header.stamp.nanosec = int(float(tm_f) * float(1000000000))

        self.publisher_.publish(msg)
        #self.get_logger().info('Publishing: "%s"' % msg.data)

        self._count += 1
        if self._count % datacount == 0:
            print(msg.height*msg.width*3)
            self._datasize = int(
                self._datasize*logmul[int(self._count/datacount) % 3])
def CreateMonoBag(imgs, bagname):
    '''Creates a bag file with camera images'''
    bag =rosbag.Bag(bagname, 'w')

    try:
        for i in range(len(imgs)):
            print("Adding %s" % imgs[i])
            fp = open( imgs[i], "rb" )
            p = ImageFile.Parser()

            while 1:
                s = fp.read(1024)
                if not s:
                    break
                p.feed(s)

            im = p.close()

            Stamp = rospy.rostime.Time.from_sec(time.time())

            Img = Image()
            Img.header.stamp = Stamp
            Img.width = im.size[0]
            Img.height = im.size[1]

            # Img.width = 1280
            # Img.height = 720
            Img.encoding = "rgb8"
            Img.header.frame_id = "camera"
            Img_data = [pix for pixdata in im.getdata() for pix in pixdata]
            Img.data = Img_data

            bag.write('camera/image_raw', Img, Stamp)
    finally:
        bag.close()       
Пример #37
0
def numpy_to_imgmsg(image, stamp=None):
    from sensor_msgs.msg import Image 
    rosimage = Image()
    rosimage.height = image.shape[0]
    rosimage.width = image.shape[1]
    if image.dtype == np.uint8:
        rosimage.encoding = '8UC%d' % image.shape[2]
        rosimage.step = image.shape[2] * rosimage.width
        rosimage.data = image.ravel().tolist()
    else:
        rosimage.encoding = '32FC%d' % image.shape[2]
        rosimage.step = image.shape[2] * rosimage.width * 4
        rosimage.data = np.array(image.flat, dtype=np.float32).tostring()
    if stamp is not None:
        rosimage.header.stamp = stamp
    return rosimage
Пример #38
0
    def step(self):
        stamp = super().step()
        if not stamp:
            return
        # Publish camera data
        if self._image_publisher.get_subscription_count(
        ) > 0 or self._always_publish:
            self._wb_device.enable(self._timestep)

            # Image data
            msg = Image()
            msg.header.stamp = stamp
            msg.header.frame_id = self._frame_id
            msg.height = self._wb_device.getHeight()
            msg.width = self._wb_device.getWidth()
            msg.is_bigendian = False
            msg.step = self._wb_device.getWidth() * 4

            if self._wb_device.getRangeImage() is None:
                return
            image_array = np.array(self._wb_device.getRangeImage(),
                                   dtype="float32")

            # We pass `data` directly to we avoid using `data` setter.
            # Otherwise ROS2 converts data to `array.array` which slows down the simulation as it copies memory internally.
            # Both, `bytearray` and `array.array`, implement Python buffer protocol, so we should not see unpredictable
            # behavior.
            # deepcode ignore W0212: Avoid conversion from `bytearray` to `array.array`.
            msg._data = image_array.tobytes()
            msg.encoding = '32FC1'

            self._image_publisher.publish(msg)

        else:
            self._wb_device.disable()
Пример #39
0
    def _publish_image(self):
        """
        Publish latest camera image as Image with CameraInfo.

        """
        # only publish if we have a subscriber
        if self._image_pub.get_num_connections() == 0:
            return

        # get latest image from cozmo's camera
        camera_image = self._cozmo.world.latest_image
        if camera_image is not None:
            # convert image to gray scale as it is gray although
            img = camera_image.raw_image.convert('L')
            ros_img = Image()
            ros_img.encoding = 'mono8'
            ros_img.width = img.size[0]
            ros_img.height = img.size[1]
            ros_img.step = ros_img.width
            ros_img.data = img.tobytes()
            ros_img.header.frame_id = 'cozmo_camera'
            cozmo_time = camera_image.image_recv_time
            ros_img.header.stamp = rospy.Time.from_sec(cozmo_time)
            # publish images and camera info
            self._image_pub.publish(ros_img)
            camera_info = self._camera_info_manager.getCameraInfo()
            camera_info.header = ros_img.header
            self._camera_info_pub.publish(camera_info)
Пример #40
0
def airpub():
    pub = rospy.Publisher("airsim/image_raw", Image, queue_size=1)
    rospy.init_node('image_raw', anonymous=True)
    rate = rospy.Rate(10)  # 10hz

    # connect to the AirSim simulator
    client = airsim.MultirotorClient()
    client.confirmConnection()

    while not rospy.is_shutdown():
        # get camera images from the car
        responses = client.simGetImages([
            airsim.ImageRequest("1", airsim.ImageType.Scene, False, False)
        ])  #scene vision image in uncompressed RGB array

        for response in responses:
            img_rgb_string = response.image_data_uint8

        # Populate image message
        msg = Image()
        msg.header.stamp = rospy.Time.now()
        msg.header.frame_id = "frameId"
        msg.encoding = "rgb8"
        msg.height = 360  # resolution should match values in settings.json
        msg.width = 640
        msg.data = img_rgb_string
        msg.is_bigendian = 0
        msg.step = msg.width * 3

        # log time and size of published image
        rospy.loginfo(len(response.image_data_uint8))
        # publish image message
        pub.publish(msg)
        # sleep until next cycle
        rate.sleep()
Пример #41
0
def vis_callback(data):

    img = np.frombuffer(data.data, dtype=np.uint8).reshape(data.height, data.width, 4)

    #fixing bgr
    img = img[:,:,0:3]
    img = img[...,::-1]

    results, outimg = inference(img)
    outmsg = ROS_Image()
    outmsg.data = outimg.tostring()
    outmsg.encoding = "bgr8"
    outmsg.header.stamp = rospy.Time.now()

    # outimg = PIL_Image.fromarray(out, 'RGB')
    # outimg.show()

    image_pub.publish(outmsg)
    results_pub.publish(jsonpickle.encode(results))

    #show or save here
    #oimg = PIL_Image.fromarray(outimg, 'RGB')
    #oimg.show()
    #oimg.save("/home/tomek/mercedes-clk-perception/images/loop2_precise/{}.jpg".format(int(time.time())))

    pub_rate.sleep()
Пример #42
0
 def _create_frame_message(self, frame):
     msg = Image()
     msg.height = FRAME_HEIGHT
     msg.width = FRAME_WIDTH
     msg.encoding = 'rgb8'
     msg.data = np.ravel(frame).tolist()
     return msg
Пример #43
0
def airpub():
    pub = rospy.Publisher("airsim/image_raw", Image, queue_size=1)
    rospy.init_node('image_raw', anonymous=True)
    rate = rospy.Rate(10) # 10hz

    # connect to the AirSim simulator 
    client = airsim.MultirotorClient()
    client.confirmConnection()

    while not rospy.is_shutdown():
         # get camera images from the car
        responses = client.simGetImages([
            airsim.ImageRequest("1", airsim.ImageType.Scene, False, False)])  #scene vision image in uncompressed RGBA array

        for response in responses:
            img_rgba_string = response.image_data_uint8

        # Populate image message
        msg=Image() 
        msg.header.stamp = rospy.Time.now()
        msg.header.frame_id = "frameId"
        msg.encoding = "rgba8"
        msg.height = 360  # resolution should match values in settings.json 
        msg.width = 640
        msg.data = img_rgba_string
        msg.is_bigendian = 0
        msg.step = msg.width * 4

        # log time and size of published image
        rospy.loginfo(len(response.image_data_uint8))
        # publish image message
        pub.publish(msg)
        # sleep until next cycle
        rate.sleep()
Пример #44
0
    def default(self, ci="unused"):
        if not self.component_instance.capturing:
            return  # press [Space] key to enable capturing

        image_local = self.data["image"]

        image = Image()
        image.header = self.get_ros_header()
        image.header.frame_id += "/base_image"
        image.height = self.component_instance.image_height
        image.width = self.component_instance.image_width
        image.encoding = "rgba8"
        image.step = image.width * 4

        # VideoTexture.ImageRender implements the buffer interface
        image.data = bytes(image_local)

        # fill this 3 parameters to get correcty image with stereo camera
        Tx = 0
        Ty = 0
        R = [1, 0, 0, 0, 1, 0, 0, 0, 1]

        intrinsic = self.data["intrinsic_matrix"]

        camera_info = CameraInfo()
        camera_info.header = image.header
        camera_info.height = image.height
        camera_info.width = image.width
        camera_info.distortion_model = "plumb_bob"
        camera_info.K = [
            intrinsic[0][0],
            intrinsic[0][1],
            intrinsic[0][2],
            intrinsic[1][0],
            intrinsic[1][1],
            intrinsic[1][2],
            intrinsic[2][0],
            intrinsic[2][1],
            intrinsic[2][2],
        ]
        camera_info.R = R
        camera_info.P = [
            intrinsic[0][0],
            intrinsic[0][1],
            intrinsic[0][2],
            Tx,
            intrinsic[1][0],
            intrinsic[1][1],
            intrinsic[1][2],
            Ty,
            intrinsic[2][0],
            intrinsic[2][1],
            intrinsic[2][2],
            0,
        ]

        self.publish(image)
        self.topic_camera_info.publish(camera_info)
def copy_Image_empty_data(image_old):
    image_new = Image()
    image_new.header = copy(image_old.header)
    image_new.height = copy(image_old.height)
    image_new.width = copy(image_old.width)
    image_new.encoding = copy(image_old.encoding)
    image_new.is_bigendian = copy(image_old.is_bigendian)
    image_new.step = copy(image_old.step)
    return image_new
Пример #46
0
	def publishCombined(self):
		#Enter Main Loop
		while not rospy.is_shutdown():
			
			#Convert to Numpy  Arrays
			map = []
			for i in range(0, self.numRobots):
				map.append(numpy.array(self.searchedData[i].data))
				
			combined2 = map[0]
			if self.numRobots > 1:
				#Find Minimum of all maps
				for i in range(1, self.numRobots):
					combined2 = numpy.minimum(combined2,map[i])
					
			#Pack Occupancy Grid Message
			mapMsg=OccupancyGrid()
			mapMsg.header.stamp=rospy.Time.now()
			mapMsg.header.frame_id=self.mapData.header.frame_id
			mapMsg.info.resolution=self.mapData.info.resolution
			mapMsg.info.width=self.mapData.info.width
			mapMsg.info.height=self.mapData.info.height
			mapMsg.info.origin=self.mapData.info.origin
			mapMsg.data=combined2.tolist()
			
			#Convert combined Occupancy grid values to grayscal image values
			combined2[combined2 == -1] = 150			#Unknown -1->150 		(gray)
			combined2[combined2 == 100] = 255			#Not_Searched 100->255	(white)
														#Searched=0				(black)
														
			#Calculate percentage of open area searched
			numNotSearched = combined2[combined2==255].size
			numSearched = combined2[combined2==0].size
			percentSearched = 100*float(numSearched)/(numNotSearched+numSearched)
			percentSearchedMsg = Float32()
			percentSearchedMsg.data = percentSearched
			self.percentPub.publish(percentSearchedMsg)
			
			#Pack Image Message
			imageMsg=Image()
			imageMsg.header.stamp = rospy.Time.now()
			imageMsg.header.frame_id = self.mapData.header.frame_id
			imageMsg.height = self.mapData.info.height
			imageMsg.width = self.mapData.info.width
			imageMsg.encoding = 'mono8'
			imageMsg.is_bigendian = 0
			imageMsg.step = self.mapData.info.width
			imageMsg.data = combined2.tolist()
			
			#Publish Combined Occupancy Grid and Image
			self.searchedCombinePub.publish(mapMsg)
			self.imagePub.publish(imageMsg)
			
			#Update Every 0.5 seconds
			rospy.sleep(1.0)
Пример #47
0
    def callback(self, data):
        #print "got some shit coming in"
        #if data is not None:
            #plane= data.pose.position
            #nrm= norm([plane.x, plane.y, plane.z])

            #normal= np.array([plane.x, plane.y, plane.z])/nrm

            #print "got here"

            ##replace with numpy array
            #plane= np.array([plane.x, plane.y, plane.z])

            ##get the rotation matrix
            #rmatrix= rotationMatrix(normal)

            ##print rmatrix

            ##for point in data.points:
                ##print point
                ##p= np.array([point.x, point.y, point.z])
                ##flattened_point= project(p, plane, normal)
                ##print flattened_point
                ##print np.dot(rmatrix,flattened_point)

        try:
            resp= self.seperation()
            print resp.result
            #self.pub.publish(resp.clusters[0])
            im= Image()
            im.header.seq= 72
            im.header.stamp.secs= 1365037570
            im.header.stamp.nsecs= 34077284
            im.header.frame_id= '/camera_rgb_optical_frame'
            im.height= 480
            im.width= 640
            im.encoding= '16UC1'
            im.is_bigendian= 0
            im.step= 1280
            im.data= [100 for n in xrange(1280*480)]

            for point in resp.clusters[0].points:
                x= point.x * 640
                y= point.y * 480
                im.data[y*1280 + x] = 10

            pub_image.publish(im)

        except Exception, e:
            print "service call failed"
            print e
Пример #48
0
 def publish_image(self):
     # get the image from the Nao
     img = self.nao_cam.getImageRemote(self.proxy_name)
     # copy the data into the ROS Image
     ros_img = Image()
     ros_img.width = img[0]
     ros_img.height = img[1]
     ros_img.step = img[2] * img[0]
     ros_img.header.stamp.secs = img[5]
     ros_img.data = img[6]
     ros_img.is_bigendian = False
     ros_img.encoding = "rgb8"
     ros_img.data = img[6]
     # publish the image
     self.nao_cam_pub.publish(ros_img)
def publish_state_image(state_from_env1, current_state_image_pub):
	current_state_image_msg = Image()
        current_state_image_msg.encoding = "mono8"
        current_state_image_msg.header.stamp = rospy.Time.now()
        current_state_image_msg.height = 68
        current_state_image_msg.width = 34
        current_state_image_msg.step = 68
        x = np.reshape(state_from_env1, (2,2312))
        idx_x = np.argwhere(x[0] == np.amax(x[0]))
        lx = idx_x.flatten().tolist()
        x[1][lx[0]] = 255
        x[1][lx[1]] = 255
        x[1][lx[2]] = 255
        y = x[1].tolist()
        current_state_image_msg.data = y
	current_state_image_pub.publish(current_state_image_msg)
 def OccupancyGridToNavImage(self, grid_map):
     img = Image()
     img.header = grid_map.header
     img.height = grid_map.info.height
     img.width = grid_map.info.width
     img.is_bigendian = 1
     img.step = grid_map.info.width
     img.encoding = "mono8"
     maxindex = img.height*img.width
     numpy.uint
     for i in range(0, maxindex, 1):
         if int(grid_map.data[i]) < 20:
             #img.data[i] = "0"
             data.append(0)
         else:
             img.data[i] = "255"
     return imgding
Пример #51
0
    def main_loop(self):
        img = Image()
        while not rospy.is_shutdown():
            #print "getting image..",
            images = self.camProxy.getImagesRemote  (self.nameId)
            #print "ok"
            # TODO: better time
            for i in [0,1]:
		#print len(images[i])
                image = images[i]
                img.header.stamp = rospy.Time.now()
                if image[7] == 0:
                    img.header.frame_id = "/CameraTop_frame"
                elif image[7] == 1:
                    img.header.frame_id = "/CameraBottom_frame"
                img.height = image[1]
                img.width = image[0]
                nbLayers = image[2]
                #colorspace = image[3]
                if image[3] == kYUVColorSpace:
                    encoding = "mono8"
                elif image[3] == kRGBColorSpace:
                    encoding = "rgb8"
                elif image[3] == kBGRColorSpace:
                    encoding = "bgr8"
                else:
                    rospy.logerror("Received unknown encoding: {0}".format(image[3]))
    
                img.encoding = encoding
                img.step = img.width * nbLayers
		if len(images) >= 2:
                	img.data = images[2][len(images[2])/2 * i:len(images[2])/2 *(i+1) + 1]
		else:
			img.data = []
			print "image with no data"
                self.info_[i].width = img.width
                self.info_[i].height = img.height
                self.info_[i].header = img.header
                self.pub_img_[i].publish(img)
                self.pub_info_[i].publish(self.info_[i])

	    self.camProxy.releaseImages(self.nameId)

        self.camProxy.unsubscribe(self.nameId)
Пример #52
0
    def default(self, ci='unused'):
        if not self.component_instance.capturing:
            return # press [Space] key to enable capturing

        image_local = self.data['image']

        image = Image()
        image.header = self.get_ros_header()
        image.height = self.component_instance.image_height
        image.width = self.component_instance.image_width
        image.encoding = self.encoding
        image.step = image.width * 4

        # VideoTexture.ImageRender implements the buffer interface
        image.data = bytes(image_local)

        # fill this 3 parameters to get correcty image with stereo camera
        Tx = 0
        Ty = 0
        R = [1, 0, 0, 0, 1, 0, 0, 0, 1]

        intrinsic = self.data['intrinsic_matrix']

        camera_info = CameraInfo()
        camera_info.header = image.header
        camera_info.height = image.height
        camera_info.width = image.width
        camera_info.distortion_model = 'plumb_bob'
        camera_info.D = [0]
        camera_info.K = [intrinsic[0][0], intrinsic[0][1], intrinsic[0][2],
                         intrinsic[1][0], intrinsic[1][1], intrinsic[1][2],
                         intrinsic[2][0], intrinsic[2][1], intrinsic[2][2]]
        camera_info.R = R
        camera_info.P = [intrinsic[0][0], intrinsic[0][1], intrinsic[0][2], Tx,
                         intrinsic[1][0], intrinsic[1][1], intrinsic[1][2], Ty,
                         intrinsic[2][0], intrinsic[2][1], intrinsic[2][2], 0]

        if self.pub_tf:
            self.publish_with_robot_transform(image)
        else:
            self.publish(image)
        self.topic_camera_info.publish(camera_info)
Пример #53
0
def main():
  if len(sys.argv) < 2:
    print("Usage: {} dataset_name".format(sys.argv[0]))
    exit(1)

  file_name = sys.argv[1]
  log_file = h5py.File('../dataset/log/{}.h5'.format(file_name))
  camera_file = h5py.File('../dataset/camera/{}.h5'.format(file_name))  

  zipped_log = izip(
    log_file['times'],
    log_file['fiber_accel'],
    log_file['fiber_gyro'])

  with rosbag.Bag('{}.bag'.format(file_name), 'w') as bag:
    bar = Bar('Camera', max=len(camera_file['X']))
    for i, img_data in enumerate(camera_file['X']):
      m_img = Image()
      m_img.header.stamp = rospy.Time.from_sec(0.01 * i)
      m_img.height = img_data.shape[1]
      m_img.width = img_data.shape[2]
      m_img.step = 3 * img_data.shape[2]
      m_img.encoding = 'rgb8'
      m_img.data = np.transpose(img_data, (1, 2, 0)).flatten().tolist()
      
      bag.write('/camera/image_raw', m_img, m_img.header.stamp)
      bar.next()
      
    bar.finish()

    bar = Bar('IMU', max=len(log_file['times']))
    for time, v_accel, v_gyro in zipped_log:
      m_imu = Imu()
      m_imu.header.stamp = rospy.Time.from_sec(time)
      [setattr(m_imu.linear_acceleration, c, v_accel[i]) for i, c in enumerate('xyz')]
      [setattr(m_imu.angular_velocity, c, v_gyro[i]) for i, c in enumerate('xyz')]

      bag.write('/fiber_imu', m_imu, m_imu.header.stamp)
      bar.next()

    bar.finish()
Пример #54
0
def array_to_image(array):
    """Takes a NxMx3 array and converts it into a ROS image message.

    """
    # Sanity check the input array shape
    if len(array.shape) != 3 or array.shape[2] != 3:
        raise ValueError('Array must have shape MxNx3')

    # Ravel the array into a single buffer
    image_data = (array.astype(np.uint8)).tostring(order='C')

    # Create the image message
    image_msg = Image()
    image_msg.height = array.shape[0]
    image_msg.width = array.shape[1]
    image_msg.encoding = 'rgb8'
    image_msg.is_bigendian = 0
    image_msg.step = array.shape[1] * 3
    image_msg.data = image_data

    return image_msg
Пример #55
0
def main():
    pub = rospy.Publisher('image_maker', Image)
    rospy.init_node('image_maker')
    #rospy.wait_for_service('tabletop_segmentation')
    im= Image()
    im.header.seq= 72
    im.header.stamp.secs= 1365037570
    im.header.stamp.nsecs= 34077284
    im.header.frame_id= '/camera_rgb_optical_frame'
    im.height= 480
    im.width= 640
    im.encoding= '16UC1'
    im.is_bigendian= 0
    im.step= 1280
    im.data= [100 for n in xrange(1280*480)]

    while not rospy.is_shutdown():
        try:
            pub.publish(im)
            sleep(.5)

        except Exception, e:
            print e
Пример #56
0
def GetImageFromFile(im_path):
	fp = open( im_path, "r" )
	p = ImageFile.Parser()
	while 1:
		s = fp.read(307218) # trying to read a full file in one shot ...
		if not s:
		    break
		p.feed(s)
	im = p.close() # we should now have an image object
	im_stamp = os.path.basename(im_path).split(".")[0] #image timestamp is directly encoded in file name
	im_stamp =  float(im_stamp)/1000000.0
	Stamp = rospy.rostime.Time.from_sec(im_stamp)
	Img = Image()
	Img.header.stamp = Stamp
	Img.width = im.size[0]
	Img.height = im.size[1]
	Img.encoding = "mono8" #needs to be changed to rgb8 for rgb images
	Img.step=Img.width #some nodes may complains ...
	Img.header.frame_id = "camera"
	Img_data = list(im.getdata()) #works for mono channels images (grayscale)
	#Img_data = [pix for pix in im.getdata()]
	#  Img_data = [pix for pixdata in im.getdata() for pix in pixdata]
	Img.data = Img_data
	return (im_stamp, Stamp, Img)
Пример #57
0
    def run(self):
        img = Image()
        r = rospy.Rate(self.config['frame_rate'])
        while self.is_looping():
            if self.pub_img_.get_num_connections() == 0:
                if self.nameId:
                    rospy.loginfo('Unsubscribing from camera as nobody listens to the topics.')
                    self.camProxy.unsubscribe(self.nameId)
                    self.nameId = None
                r.sleep()
                continue
            if self.nameId is None:
                self.reconfigure(self.config, 0)
                r.sleep()
                continue
            image = self.camProxy.getImageRemote(self.nameId)
            if image is None:
                continue
            # Deal with the image
            if self.config['use_ros_time']:
                img.header.stamp = rospy.Time.now()
            else:
                img.header.stamp = rospy.Time(image[4] + image[5]*1e-6)
            img.header.frame_id = self.frame_id
            img.height = image[1]
            img.width = image[0]
            nbLayers = image[2]
            if image[3] == kYUVColorSpace:
                encoding = "mono8"
            elif image[3] == kRGBColorSpace:
                encoding = "rgb8"
            elif image[3] == kBGRColorSpace:
                encoding = "bgr8"
            elif image[3] == kYUV422ColorSpace:
                encoding = "yuv422" # this works only in ROS groovy and later
            elif image[3] == kDepthColorSpace:
                encoding = "mono16"
            else:
                rospy.logerr("Received unknown encoding: {0}".format(image[3]))
            img.encoding = encoding
            img.step = img.width * nbLayers
            img.data = image[6]

            self.pub_img_.publish(img)

            # deal with the camera info
            if self.config['source'] == kDepthCamera and image[3] == kDepthColorSpace:
                infomsg = CameraInfo()
                # yes, this is only for an XTion / Kinect but that's the only thing supported by NAO
                ratio_x = float(640)/float(img.width)
                ratio_y = float(480)/float(img.height)
                infomsg.width = img.width
                infomsg.height = img.height
                # [ 525., 0., 3.1950000000000000e+02, 0., 525., 2.3950000000000000e+02, 0., 0., 1. ]
                infomsg.K = [ 525, 0, 3.1950000000000000e+02,
                              0, 525, 2.3950000000000000e+02,
                              0, 0, 1 ]
                infomsg.P = [ 525, 0, 3.1950000000000000e+02, 0,
                              0, 525, 2.3950000000000000e+02, 0,
                              0, 0, 1, 0 ]
                for i in range(3):
                    infomsg.K[i] = infomsg.K[i] / ratio_x
                    infomsg.K[3+i] = infomsg.K[3+i] / ratio_y
                    infomsg.P[i] = infomsg.P[i] / ratio_x
                    infomsg.P[4+i] = infomsg.P[4+i] / ratio_y

                infomsg.D = []
                infomsg.binning_x = 0
                infomsg.binning_y = 0
                infomsg.distortion_model = ""

                infomsg.header = img.header
                self.pub_info_.publish(infomsg)
            elif self.config['camera_info_url'] in self.camera_infos:
                infomsg = self.camera_infos[self.config['camera_info_url']]

                infomsg.header = img.header
                self.pub_info_.publish(infomsg)

            r.sleep()

        if (self.nameId):
            rospy.loginfo("unsubscribing from camera ")
            self.camProxy.unsubscribe(self.nameId)
Пример #58
0
import numpy as np
import rospy
import sys
from sensor_msgs.msg import Image

if __name__ == '__main__': 
    rospy.init_node('image_publish')

    name = sys.argv[1]
    image = cv2.imread(name)
    #cv2.imshow("im", image)
    #cv2.waitKey(5)

    hz = rospy.get_param("~rate", 1)
    rate = rospy.Rate(hz)

    pub = rospy.Publisher('image', Image, queue_size=1)

    msg = Image()
    msg.header.stamp = rospy.Time.now()
    msg.encoding = 'bgr8'
    msg.height = image.shape[0]
    msg.width = image.shape[1]
    msg.step = image.shape[1] * 3
    msg.data = image.tostring()
    pub.publish(msg)

    while not rospy.is_shutdown():
        pub.publish(msg)
        rate.sleep()
Пример #59
-1
    def default(self, ci='unused'):
        """ Publish the data of the Camera as a ROS Image message. """
        if not self.component_instance.capturing:
            return # press [Space] key to enable capturing

        image_local = self.data['image']

        image = Image()
        image.header = self.get_ros_header()
        image.header.frame_id += '/base_image'
        image.height = self.component_instance.image_height
        image.width = self.component_instance.image_width
        image.encoding = 'rgba8'
        image.step = image.width * 4

        # VideoTexture.ImageRender implements the buffer interface
        image.data = bytes(image_local)

        # sensor_msgs/CameraInfo [ http://ros.org/wiki/rviz/DisplayTypes/Camera ]
        # fill this 3 parameters to get correcty image with stereo camera
        Tx = 0
        Ty = 0
        R = [1, 0, 0, 0, 1, 0, 0, 0, 1]

        intrinsic = self.data['intrinsic_matrix']

        camera_info = CameraInfo()
        camera_info.header = image.header
        camera_info.height = image.height
        camera_info.width = image.width
        camera_info.distortion_model = 'plumb_bob'
        camera_info.K = [intrinsic[0][0], intrinsic[0][1], intrinsic[0][2],
                         intrinsic[1][0], intrinsic[1][1], intrinsic[1][2],
                         intrinsic[2][0], intrinsic[2][1], intrinsic[2][2]]
        camera_info.R = R
        camera_info.P = [intrinsic[0][0], intrinsic[0][1], intrinsic[0][2], Tx,
                         intrinsic[1][0], intrinsic[1][1], intrinsic[1][2], Ty,
                         intrinsic[2][0], intrinsic[2][1], intrinsic[2][2], 0]

        self.publish(image)
        self.topic_camera_info.publish(camera_info)