Пример #1
0
def object_separate(stat_dict, file_name):
    # encryption determinating and separating objects by is_encrypt.py, separator.py
    count_result = [0, 0, 0, 0, 0, 0, 0, 0, 0]
    set_threshold(stat_dict)
    for fname in tqdm(file_name, total=len(file_name)):
        with open(rf"{data_path}{os.sep}{fname}", "rb") as file:
            pk = pickle.load(file)

        # Separation from separate.py
        parsed = parse_ip_port(pk)
        if parsed != -1:
            obj = separate(parsed, stat_dict)
            
            # Can separate
            if obj <= 3:
                if encrypt.encryption_determinate(pk[-1]):
                    place = "encrypt"
                    count_result[7] += 1
                else:
                    place = "plain"
                    count_result[8] += 1
                with open(rf"{save_path}{os.sep}{place}{os.sep}{fname}", "wb") as p_file:
                    pickle.dump(pk + [obj], p_file)
            count_result[obj] += 1
        # ICMP
        else:
            count_result[6] += 1
    return count_result
def summarize(text):
    # SPLIT TO PARAGRAPHS
    pre_paragraphs = text.split('\n')
    paragraphs = []
    for i, p in enumerate(pre_paragraphs):
        if not re.match(r'^\s*$', p) and (i == len(pre_paragraphs) - 1 or re.match(r'^\s*$', pre_paragraphs[i+1])):
            paragraphs.append(p)

    # SPLIT TO SENTENCES
    sentences = separator.separate(text)
    print(f'Num of sentences: {len(sentences)}')
    for i, s in enumerate(sentences):
        print(f'#{i+1}: {s}')

    # TOKENIZE
    stem = False
    if stem:
        tokenized_sentences = [[czech_stemmer.cz_stem(word, aggressive=True) for word in sentence]
                               for sentence in tokenize(sentences)]
    else:
        tokenized_sentences = tokenize(sentences)

    # REMOVE STOPWORDS
    tokenized_sentences_without_stopwords = remove_stop_words(tokenized_sentences, keep_case=False)
    sentences_without_stopwords_case = remove_stop_words(sentences, keep_case=True, is_tokenized=False,
                                                         return_tokenized=False)
    print('===Sentences without stopwords===')
    for i, s in enumerate(tokenized_sentences_without_stopwords):
        print(f'''#{i+1}: {' '.join(s)}''')

    print('===Sentences without stopwords CASE===')
    for i, s in enumerate(sentences_without_stopwords_case):
        print(f'''#{i+1}: {s}''')

    # POS-TAG
    tagged_sentences = pos_tag(sentences_without_stopwords_case)
    print('=====Tagged_sentences=====')
    for i, s in enumerate(tagged_sentences):
        print(f'''#{i+1}: {s}''')

    summary = ''
    counter = 0
    summary_length = max(min(round(len(sentences) / 4), 15), 3)  # length between 3-15 sentences
    ranked_sentence_indexes = textrank(tokenized_sentences_without_stopwords, stopwords=[], top_n=summary_length)
    print(f'ranked_sentence_indexes: {ranked_sentence_indexes}')
    # add 1st sentence always
    summary += f'{sentences[0]}\n'
    counter += 1
    ranked_sentence_indexes.remove(0)
    # add also 2nd sentence if it is in top50%
    if 1 in ranked_sentence_indexes[:len(ranked_sentence_indexes) // 2]:
        summary += f'{sentences[1]}\n'
        counter += 1
        ranked_sentence_indexes.remove(1)
    for sentence_index in sorted(ranked_sentence_indexes[:summary_length - counter]):
        if counter == summary_length:
            break
        summary += f'{sentences[sentence_index]}\n'
        counter += 1
    return summary
def summarize(text):
    # SPLIT TO PARAGRAPHS
    pre_paragraphs = text.split('\n')
    paragraphs = []
    for i, p in enumerate(pre_paragraphs):
        if not re.match(r'^\s*$', p) and (i == len(pre_paragraphs) - 1
                                          or re.match(r'^\s*$',
                                                      pre_paragraphs[i + 1])):
            paragraphs.append(p)
    # print(f'Num of paragraphs: {len(paragraphs)}')
    # for i, p in enumerate(paragraphs):
    #     print(f'par#{i+1}: {p}')

    # SPLIT TO SENTENCES
    sentences = separator.separate(text)
    print(f'Num of sentences: {len(sentences)}')
    for i, s in enumerate(sentences):
        print(f'#{i+1}: {s}')

    # TOKENIZE
    stem = False
    if stem:
        tokenized_sentences = [[
            czech_stemmer.cz_stem(word, aggressive=False) for word in sentence
        ] for sentence in tokenize(sentences)]
    else:
        tokenized_sentences = tokenize(sentences)

    # REMOVE STOPWORDS
    tokenized_sentences_without_stopwords = remove_stop_words(
        tokenized_sentences, keep_case=False)
    sentences_without_stopwords_case = remove_stop_words(
        sentences, keep_case=True, is_tokenized=False, return_tokenized=False)
    print('===Sentences without stopwords===')
    for i, s in enumerate(tokenized_sentences_without_stopwords):
        print(f'''#{i+1}: {' '.join(s)}''')

    print('===Sentences without stopwords CASE===')
    for i, s in enumerate(sentences_without_stopwords_case):
        print(f'''#{i+1}: {s}''')

    # POS-TAG
    tagged_sentences = pos_tag(sentences_without_stopwords_case)
    print('=====Tagged_sentences=====')
    for i, s in enumerate(tagged_sentences):
        print(f'''#{i+1}: {s}''')

    # 1. THEMATICITY FEATURE
    thematicity_feature_scores = thematicity_feature(
        tokenized_sentences_without_stopwords)

    # 2. SENTENCE POSITION FEATURE - NOTE: shitty!
    sentence_position_scores = sentence_position_feature(len(sentences))

    # 3. SENTENCE LENGTH FEATURE
    sentence_length_scores = sentence_length_feature(tokenized_sentences)

    # 4. SENTENCE PARAGRAPH POSITION FEATURE

    # 5. PROPER_NOUN FEATURE
    proper_noun_scores = proper_noun_feature(tagged_sentences)

    # 6. NUMERALS FEATURE
    numerals_scores = numerals_feature(tokenized_sentences)

    # 7. NAMED ENTITIES FEATURE - very similar to PROPER_NOUN FEATURE

    # 8. TF_ISF FEATURE - NOTE: TextRank instead of TS_ISF ??? ts_isf_orig is meh
    tf_isf_scores = tf_isf_orig_feature(tokenized_sentences_without_stopwords)

    # 9. CENTROID SIMILARITY FEATURE
    centroid_similarity_scores = centroid_similarity_feature(
        sentences, tf_isf_scores)

    # 10. UPPER-CASE FEATURE (not in the paper)
    upper_case_scores = upper_case_feature(tokenized_sentences)

    # 11. QUOTES FEATURE (not in the paper)
    quotes_scores = quotes_feature(sentences)

    # 12. REFERENCES FEATURE (not in the paper)
    references_scores = references_feature(tokenized_sentences)

    # 13. TEXTRANK FEATURE (not in the paper)
    textrank_scores = textrank.textrank(tokenized_sentences, True,
                                        '4-1-0.0001')

    feature_matrix = []
    feature_matrix.append(thematicity_feature_scores)
    feature_matrix.append(sentence_position_scores)
    feature_matrix.append(sentence_length_scores)
    feature_matrix.append(proper_noun_scores)
    feature_matrix.append(numerals_scores)
    feature_matrix.append(tf_isf_scores)
    feature_matrix.append(centroid_similarity_scores)
    feature_matrix.append(upper_case_scores)

    features = [
        '  thema', 'sen_pos', 'sen_len', '  propn', '    num', ' tf_isf',
        'cen_sim', '  upper'
    ]

    feature_matrix_2 = np.zeros((len(sentences), len(features)))
    for i in range(len(features)):
        for j in range(len(sentences)):
            feature_matrix_2[j][i] = feature_matrix[i][j]

    feature_sum = []
    for i in range(len(np.sum(feature_matrix_2, axis=1))):
        feature_sum.append(np.sum(feature_matrix_2, axis=1)[i])

    print('=====Scores=====')
    print(35 * ' ', end='|')
    for f in features:
        print(f, end='|')
    print()
    for i, s in enumerate(sentences):
        print(f'#{"{:2d}".format(i + 1)}: {s[:30]}', end='|')
        for f_s in feature_matrix:
            print('{: .4f}'.format(round(f_s[i], 4)), end='|')
        print('{: .4f}'.format(round(feature_sum[i], 4)))

    print('Training rbm...')
    rbm_trained = rbm.test_rbm(dataset=feature_matrix_2,
                               learning_rate=0.1,
                               training_epochs=14,
                               batch_size=5,
                               n_chains=5,
                               n_hidden=len(features))
    # another implementation of rbm, from sklearn
    # rbm2 = BernoulliRBM(n_components=len(features), n_iter=14, batch_size=5, learning_rate=0.1)
    # rbm_trained = rbm2.fit_transform(feature_matrix_2)
    # print(rbm_trained)
    rbm_trained_sums = np.sum(rbm_trained, axis=1)

    print('=====RBM Enhanced Scores=====')
    print(35 * ' ', end='|')
    for f in features:
        print(f, end='|')
    print()
    for i, s in enumerate(sentences):
        print(f'#{"{:2d}".format(i + 1)}: {s[:30]}', end='|')
        for f_s in rbm_trained[i]:
            print('{: .4f}'.format(round(f_s, 4)), end='|')
        print('{: .4f}'.format(round(rbm_trained_sums[i], 4)))

    enhanced_feature_sum = []
    feature_sum = []

    for i in range(len(np.sum(rbm_trained, axis=1))):
        enhanced_feature_sum.append([np.sum(rbm_trained, axis=1)[i], i])
        feature_sum.append([np.sum(feature_matrix_2, axis=1)[i], i])

    print(f'enhanced_feature_sum: {enhanced_feature_sum}')
    print(f'feature_sum: {feature_sum}')

    enhanced_feature_sum.sort(key=lambda x: x[0])
    feature_sum.sort(key=lambda x: -1 * x[0])
    print('=====Sorted=====')
    print(f'enhanced_feature_sum: {enhanced_feature_sum}')
    print(f'feature_sum: {feature_sum}')

    # print('=====The text=====')
    # for x in range(len(sentences)):
    #     print(sentences[x])

    extracted_sentences_rbm = []
    extracted_sentences_rbm.append([sentences[0], 0])
    extracted_sentences_simple = []
    extracted_sentences_simple.append([sentences[0], 0])

    summary_length = max(min(round(len(sentences) / 4), 12),
                         3)  # length between 3-12 sentences
    for x in range(summary_length):
        if enhanced_feature_sum[x][1] != 0:
            extracted_sentences_rbm.append([
                sentences[enhanced_feature_sum[x][1]],
                enhanced_feature_sum[x][1]
            ])
        if feature_sum[x][1] != 0:
            extracted_sentences_simple.append(
                [sentences[feature_sum[x][1]], feature_sum[x][1]])

    extracted_sentences_rbm.sort(key=lambda x: x[1])
    extracted_sentences_simple.sort(key=lambda x: x[1])

    final_text_rbm = ''
    for i in range(len(extracted_sentences_rbm)):
        final_text_rbm += extracted_sentences_rbm[i][0] + '\n'
    final_text_simple = ''
    for i in range(len(extracted_sentences_simple)):
        final_text_simple += extracted_sentences_simple[i][0] + '\n'

    print('=====Extracted Final Text RBM=====')
    print(final_text_rbm)
    print()
    print('=====Extracted Final Text simple=====')
    print(final_text_simple)

    return final_text_rbm
Пример #4
0
article_count = 0
articles_in_sentences = {}
for filename in article_files:
    file_name, file_extension = os.path.splitext(filename)

    tree = ET.parse(f'{my_dir}/articles/{filename}')
    root = tree.getroot()
    articles = list(root)
    article_number = 0

    for article in articles:
        article_count += 1
        title = article.find('nadpis').text.strip()
        content = article.find('text').text.strip()
        # SPLIT TO SENTENCES
        sentences = separator.separate(content)
        for s in range(len(sentences)):
            sentences[s] = sentences[s].strip('" \n')
        articles_in_sentences[
            f'{filename.split(".")[0]}-{article_number}'] = sentences
        article_number += 1

print(articles_in_sentences)
print(f'Articles total: {article_count}')

dirr = os.path.dirname(os.path.realpath(__file__))
golden_filenames = os.listdir(f'{dirr}/rouge_2_0/summarizer/reference')

sentence_number_dict = {}
avg_words_list = []
avg_lines_list = []