Пример #1
0
 def plot_go_terms_up(filename, ontologies, case_name, df):
     self._temp_df[case_name] = df.copy()
     self._plus[case_name] = sum(df.plus_minus == '+')
     self._minus[case_name] = sum(df.plus_minus == '-')
     pylab.savefig(f"{config.output_dir}/Panther_up_{case_name}.png")
     pylab.savefig(filename)
     pylab.close()
Пример #2
0
 def plotter(filename, key):
     name = key.replace(" ", "_")
     pylab.ioff()
     histograms[key].plot(logy=False, lw=2, marker="o")
     pylab.title(name + "(%s)" % count)
     pylab.grid(True)
     pylab.savefig(filename)
     pylab.close()  # need to close the figure otherwise warnings 
Пример #3
0
 def plotter(filename, key):
     name = key.replace(" ", "_")
     pylab.ioff()
     histograms[key].plot(logy=False, lw=2, marker="o")
     pylab.title(name + "(%s)" % count)
     pylab.grid(True)
     pylab.savefig(filename)
     pylab.close()  # need to close the figure otherwise warnings
Пример #4
0
 def plot_go_terms_down(filename, ontologies, case_name, df):
     df = self.pe.plot_go_terms("down", ontologies=ontologies,
                                       compute_levels=self.enrichment_params['plot_compute_levels'],
                                       log=self.enrichment_params['plot_logx'])
     self._temp_df[case_name] = df.copy()
     self._plus[case_name] = sum(df.plus_minus == '+')
     self._minus[case_name] = sum(df.plus_minus == '-')
     pylab.savefig(f"{config.output_dir}/Panther_down_{case_name}.png")
     pylab.savefig(filename)
     pylab.close()
Пример #5
0
        # plot coverage found by blasr, with random y distribution (to see if there are overlaps)
        ax = axarr[i * 2 + 1]
        list_contigs = plot_contigs(res_best_ref, ax, colors, mode="random")
        for area in genome_not_covered:
            ax.axvspan(area[0], area[1], alpha=0.1, color='k')

        ax.set_ylabel("Random")
        ax.set_xlabel("Reference genome position")
        ax.set_title(ref_found[i] + " : Random y")

        if save_not_covered:
            print(ref_found[i])
            if len(genome_not_covered) > 0:
                df = pd.DataFrame(genome_not_covered)
                df.columns = ["start", "end"]
                df["reference"] = ref_found[i]
                df_not_covered_all = pd.concat([df_not_covered_all, df],
                                               ignore_index=True)

    #fig.subplots_adjust(bottom=0.1,top=0.9)
    fig.tight_layout()
    if save_plot:
        pylab.savefig(file_plot)
    else:
        pylab.show()
    pylab.close("all")

    if save_not_covered:
        df_not_covered_all.to_csv(filename_not_covered, index=None)
Пример #6
0
print("Create plots")
#colors = ['m','r','y','g','b','c','k']

cmap = pylab.cm.get_cmap(colormap)
#colors = [cmap(i) for i in np.linspace(0,1,len(list_analysis))]

# positions of genome
gen_pos = [[i, i + step - 1] for i in range(0, len_genome, step)]
y_pos = list(np.linspace(0, 1, len(analysis_names) + 2))

if custom_colors:
    y_col = [colors[i] for i in range(len(analysis_names))]
else:
    y_col = [cmap(i) for i in np.linspace(0, 1, len(analysis_names))]

pylab.close('all')

# create figure
fig, axarr = pylab.subplots(len(gen_pos),
                            1,
                            figsize=(int(step / 20000),
                                     int(len(gen_pos)) * 1.1))
for i in range(len(gen_pos)):
    subplot_variant_position(df_result, i, gen_pos, axarr, analysis_names,
                             y_pos, y_col, be_repeats_concat)

# add grey at the end (no genome)
ax = axarr[-1]
ax.axvspan(len_genome, gen_pos[-1][1], alpha=0.5, color='k')

#fig.subplots_adjust(bottom=0.2)