Пример #1
0
    def plot_gc_content(self, fontsize=16, ec="k", bins=100):
        """plot GC content histogram

        :params bins: a value for the number of bins or an array (with a copy()
            method)
        :param ec: add black contour on the bars

        .. plot::
            :include-source:

            from sequana import BAM, sequana_data
            b = BAM(sequana_data('test.bam'))
            b.plot_gc_content()

        """
        data = self.get_gc_content()
        try:
            X = np.linspace(0, 100, bins)
        except:
            X = bins.copy()

        pylab.hist(data, X, normed=True, ec=ec)
        pylab.grid(True)
        mu = pylab.mean(data)
        sigma = pylab.std(data)

        X = pylab.linspace(X.min(), X.max(), 100)
        pylab.plot(X, pylab.normpdf(X, mu, sigma), lw=2, color="r", ls="--")
        pylab.xlabel("GC content", fontsize=16)
Пример #2
0
    def hist_read_length_consensus_isoform(self, mode="all", bins=80, rwidth=0.8,
        align="left", fontsize=16, edgecolor="k", **kwargs):
        """

        mode can be all, lq, hq
        """
        pylab.clf()

        L1 = [len(read['sequence']) for read in self.lq_sequence]
        L2 = [len(read['sequence']) for read in self.hq_sequence]
        if mode == "all":
            L = L1 + L2
        elif mode == "lq":
            L = L1
        else:
            L = L2
 
        Y, X, _ = pylab.hist(L, bins=bins, rwidth=rwidth, align=align,
                    ec=edgecolor, **kwargs)
        pylab.gca().set_ylim(bottom=0)
        pylab.gca().set_xlim(left=0)
        pylab.xlabel("Read length", fontsize=fontsize)
        pylab.ylabel("Number of reads", fontsize=fontsize)
        pylab.grid()

        ax_twin = pylab.gca().twinx()

        shift = (X[1] - X[0]) / 2

        ax_twin.plot(X[0:-1]- shift, len(L) - pylab.cumsum(Y), "k")
        ax_twin.set_ylim(bottom=0)
        pylab.ylabel("CDF", fontsize=fontsize)

        pylab.title("Read length of Consensus isoforms reads")
Пример #3
0
    def scatter_plot(self, filename=None, hold=False):
        """Scatter plot of the score versus length of each ortholog

        .. plot::
            :include-source:

            from sequana import BUSCO, sequana_data
            b = BUSCO(sequana_data("test_busco_full_table.tsv"))
            b.scatter_plot()
        """
        if hold is False:
            pylab.clf()
        colors = ["green", "orange", "red", "blue"]
        markers = ['o', 's', 'x', 'o']
        for i, this in enumerate(["Complete", "Fragmented", "Missing",  "Duplicated"]):
            mask = self.df.Status == "Complete"
            if sum(mask)>0:
                self.df[mask].plot(x="Length", y="Score", kind="scatter", 
                    color=colors[i],
                    marker=markers[i], label="Complete")

        pylab.legend()
        pylab.grid()
        if filename:
            pylab.savefig(filename)
Пример #4
0
    def hist_concordance(self,  bins=100, fontsize=16):
        """

            formula : 1 - (in + del + mismatch / (in + del + mismatch + match) )

        For BWA and BLASR, the get_cigar_stats are different !!!
        BWA for instance has no X stored while Pacbio forbids the use of the M
        (CMATCH) tag. Instead, it uses X (CDIFF) and = (CEQUAL) characters.

        Subread Accuracy: The post-mapping accuracy of the basecalls.
        Formula: [1 - (errors/subread length)], where errors = number of deletions +
        insertions + substitutions.

        """
        try:
            concordance = self._concordance
        except:
            self._set_concordance()
            concordance = self._concordance

        pylab.hist(concordance, bins=bins)
        pylab.grid()
        mu = np.mean(concordance)
        median = np.median(concordance)
        pylab.axvline(mu, color='r', alpha=0.5)
        pylab.axvline(median, color='r', alpha=0.5, ls="--")
        pylab.xlabel("concordance", fontsize=fontsize)
Пример #5
0
    def plot_count_per_sample(self, fontsize=12, sample_list=None):
        """"Number of mapped reads per sample. Each color for each replicate

        .. plot::
            :include-source:

            from sequana.rnadiff import RNADiffResults
            from sequana import sequana_data

            r = RNADiffResults(sequana_data("rnadiff/rnadiff_onecond_1"))
            r.plot_count_per_sample()
        """
        sample_names = self.sample_names
        N = len(sample_names)
        dd = self.df[sample_names].sum()
        pylab.clf()

        colors = []
        for sample in self.sample_names:
            colors.append(self.colors[self.get_cond_from_sample(sample)])

        pylab.bar(range(N), (dd/1000000).values, 
            color=colors, alpha=1, 
            zorder=10, lw=1, ec="k", width=0.9)
        pylab.xlabel("Samples", fontsize=fontsize)
        pylab.ylabel("Total read count (millions)", fontsize=fontsize)
        pylab.grid(True, zorder=0)
        pylab.title("Total read count per sample", fontsize=fontsize)
        pylab.xticks(range(N), self.sample_names)
Пример #6
0
    def plot_volcano(self):
        """
        .. plot::
            :include-source:
    
            from sequana.rnadiff import RNADiffResults
            from sequana import sequana_data

            r = RNADiffResults(sequana_data("rnadiff/rnadiff_onecond_1"))
            r.plot_volcano()

        """
        d1 = self.df.query("padj>0.05")
        d2 = self.df.query("padj<=0.05")

        fig = pylab.figure()
        pylab.plot(d1.log2FoldChange, -np.log10(d1.padj), marker="o",
            alpha=0.5, color="r", lw=0)
        pylab.plot(d2.log2FoldChange, -np.log10(d2.padj), marker="o",
            alpha=0.5, color="k", lw=0)

        pylab.grid(True)
        pylab.xlabel("fold change")
        pylab.ylabel("log10 adjusted p-value")
        m1 = abs(min(self.df.log2FoldChange))
        m2 = max(self.df.log2FoldChange)
        limit = max(m1,m2)
        pylab.xlim([-limit, limit])
        y1,y2 = pylab.ylim()
        pylab.ylim([0,y2])

        pylab.axhline(-np.log10(0.05), lw=2, ls="--", color="r", label="pvalue threshold (0.05)")
Пример #7
0
    def plot_hist_normalized_coverage(self, filename=None, binwidth=0.1,
            max_z=4):
        """ Barplot of the normalized coverage with gaussian fitting

        """
        pylab.clf()
        # if there are a NaN -> can't set up binning
        d = self.df["scale"][self.range[0]:self.range[1]].dropna()
        # remove outlier -> plot crash if range between min and max is too high
        d = d[np.abs(d - d.mean()) <= (4 * d.std())]
        bins = self._set_bins(d, binwidth)
        self.mixture_fitting.data = d
        try:
            self.mixture_fitting.plot(self.gaussians_params, bins=bins, Xmin=0,
                                      Xmax=max_z)
        except ZeroDivisionError:
            pass
        pylab.grid(True)
        pylab.xlim([0,max_z])
        pylab.xlabel("Normalised per-base coverage")
        try:
            pylab.tight_layout()
        except:
            pass
        if filename:
            pylab.savefig(filename)
Пример #8
0
    def plot_unknown_barcodes(self, N=20):
        ub = self.data['UnknownBarcodes']
        df = pd.DataFrame({x['Lane']: x['Barcodes'] for x in ub})
        if "unknown" in df.index and len(df) == 1:
            df.loc['known'] = [0 for i in df.columns]

        # if data is made of undetermined only, the dataframe is just made of
        # N lanes with one entry : unknown
        S = df.sum(axis=1).sort_values(ascending=False).index[0:N]
        data = df.loc[S][::-1]
        #print(data)

        data.columns = ["Lane {}".format(x) for x in data.columns]
        from matplotlib import rcParams
        rcParams['axes.axisbelow'] = True
        pylab.figure(figsize=(10, 8))
        ax = pylab.gca()
        data.plot(kind="barh", width=1, ec="k", ax=ax)
        rcParams['axes.axisbelow'] = False
        pylab.xlabel("Number of reads", fontsize=12)
        pylab.ylabel("")
        pylab.grid(True)
        pylab.legend(
            ["Lane {}".format(x) for x in range(1,
                                                len(df.columns) + 1)],
            loc="lower right")
        try:
            pylab.tight_layout()
        except Exception as err:
            print(err)
        return data
Пример #9
0
    def scatterplot(self, enrich, cutoff=0.05, nmax=10, gene_set_size=[]):
        df = self._get_final_df(enrich.results, cutoff=cutoff, nmax=nmax)

        pylab.clf()
        pylab.scatter(-pylab.log10(df['Adjusted P-value']),
                      range(len(df)),
                      s=10 * df['size'],
                      c=df['size'])

        pylab.xlabel("Odd ratio")
        pylab.ylabel("Gene sets")
        pylab.yticks(range(len(df)), df.name)
        a, b = pylab.xlim()
        pylab.xlim([0, b])
        pylab.grid(True)
        ax = pylab.gca()

        M = max(df['size'])
        if M > 100:
            l1, l2, l3 = "10", "100", str(M)
        else:
            l1, l2, l3 = str(round(M / 3)), str(round(M * 2 / 3)), str(M)

        handles = [
            pylab.Line2D([0], [0], marker="o", markersize=5, label=l1, ls=""),
            pylab.Line2D([0], [0], marker="o", markersize=10, label=l2, ls=""),
            pylab.Line2D([0], [0], marker="o", markersize=15, label=l3, ls="")
        ]
        ax.legend(handles=handles, loc="upper left", title="gene-set size")

        pylab.axvline(1.3, lw=2, ls="--", color="r")
        pylab.tight_layout()
        ax = pylab.colorbar(pylab.gci())
        return df
Пример #10
0
    def get_max_gc_correlation(self, reference):
        """Plot correlation between coverage and GC content by varying the GC window

         The GC content uses a moving window of size W. This parameter affects
         the correlation bewteen coverage and GC. This function find the
         *optimal* window length.

        """
        pylab.clf()
        corrs = []
        wss = []

        def func(params):
            ws = int(round(params[0]))
            if ws < 10:
                return 0
            self.bed.compute_gc_content(reference, ws)
            corr = self.get_gc_correlation()
            corrs.append(corr)
            wss.append(ws)
            return corr

        from scipy.optimize import fmin
        res = fmin(func, 100, xtol=1, disp=False)  # guess is 200
        pylab.plot(wss, corrs, "o")
        pylab.xlabel("GC window size")
        pylab.ylabel("Correlation")
        pylab.grid()
        return res[0]
Пример #11
0
    def histogram_sequence_lengths(self, logy=True):
        """Histogram sequence lengths

        .. plot::
            :include-source:

            from sequana import sequana_data
            from sequana import FastQC
            filename  = sequana_data("test.fastq", "testing")
            qc = FastQC(filename)
            qc.histogram_sequence_lengths()

        """
        data = [len(x) for x in self.sequences]
        bary, barx = np.histogram(data, bins=range(max(data)+1))

        # get rid of zeros to avoid warnings
        bx = [x for x,y in zip(barx, bary) if y!=0]
        by = [y for x,y in zip(barx, bary) if y!=0]
        if logy:
            pylab.bar(bx, pylab.log10(by))
        else:
            pylab.bar(bx, by)

        pylab.xlim([1,max(data)+1])

        pylab.grid(True)
        pylab.xlabel("position (bp)", fontsize=self.fontsize)
        pylab.ylabel("Count (log scale)", fontsize=self.fontsize)
Пример #12
0
    def plot_gc_content(self, fontsize=16, ec="k", bins=100):
        """plot GC content histogram

        :params bins: a value for the number of bins or an array (with a copy()
            method)
        :param ec: add black contour on the bars

        .. plot::
            :include-source:

            from sequana import BAM, sequana_data
            b = BAM(sequana_data('test.bam'))
            b.plot_gc_content()

        """
        data = self.get_gc_content()
        try:
            X = np.linspace(0, 100, bins)
        except:
            X = bins.copy()

        pylab.hist(data, X, density=True, ec=ec)
        pylab.grid(True)
        mu = pylab.mean(data)
        sigma = pylab.std(data)

        X = pylab.linspace(X.min(), X.max(), 100)

        from sequana.misc import normpdf

        pylab.plot(X, normpdf(X, mu, sigma), lw=2, color="r", ls="--")
        pylab.xlabel("GC content", fontsize=16)
Пример #13
0
    def hist_snr(self, bins=50, alpha=0.5, hold=False, fontsize=12,
                grid=True, xlabel="SNR", ylabel="#",title="", clip_upper_SNR=30):
        """Plot histogram of the ACGT SNRs for all reads

        :param int bins: binning for the histogram. Note that the range starts
            at 0 and ends at clip_upper_SNR
        :param float alpha: transparency of the histograms
        :param bool hold:
        :param int fontsize:
        :param bool grid:
        :param str xlabel:
        :param str ylabel:
        :param str title:

        .. plot::
            :include-source:

            from sequana.pacbio import PacbioSubreads
            from sequana import sequana_data
            b = PacbioSubreads(sequana_data("test_pacbio_subreads.bam"))
            b.hist_snr()

        """
        if self._df is None:
            self._get_df()

        # old pacbio format has no SNR stored
        if len(self._df['snr_A'].dropna()) == 0:
            # nothing to plot
            from sequana import sequana_data
            pylab.clf()
            pylab.imshow(pylab.imread(sequana_data("no_data.jpg")))
            pylab.gca().axis('off')
            return

        if hold is False:
            pylab.clf()

        maxSNR = 0
        for letter in "ACGT":
            m = self._df.loc[:,"snr_{}".format(letter)].max()
            if m > maxSNR:
                maxSNR = m

        if maxSNR > clip_upper_SNR:
            maxSNR = clip_upper_SNR

        bins = pylab.linspace(0, maxSNR, bins)

        pylab.hist(self._df.loc[:,'snr_A'].clip_upper(maxSNR), alpha=alpha, label="A", bins=bins)
        pylab.hist(self._df.loc[:,'snr_C'].clip_upper(maxSNR), alpha=alpha, label="C", bins=bins)
        pylab.hist(self._df.loc[:,'snr_G'].clip_upper(maxSNR), alpha=alpha, label="G", bins=bins)
        pylab.hist(self._df.loc[:,'snr_T'].clip_upper(maxSNR), alpha=alpha, label="T", bins=bins)
        pylab.legend()
        pylab.xlabel(xlabel, fontsize=fontsize)
        pylab.ylabel(ylabel, fontsize=fontsize)
        pylab.title(title,fontsize=fontsize)
        if grid is True:
            pylab.grid(True)
Пример #14
0
 def plotter(filename, key):
     name = key.replace(" ", "_")
     pylab.ioff()
     histograms[key].plot(logy=False, lw=2, marker="o")
     pylab.title(name + "(%s)" % count)
     pylab.grid(True)
     pylab.savefig(filename)
     pylab.close()  # need to close the figure otherwise warnings 
Пример #15
0
 def plot_padj_hist(self, bins=60, fontsize=16):
     pylab.hist(self.df.padj.dropna(), bins=bins, ec="k")
     pylab.grid(True)
     pylab.xlabel("Adjusted p-value", fontsize=fontsize)
     pylab.ylabel("Occurences", fontsize=fontsize)
     try:
         pylab.tight_layout()
     except:
         pass
Пример #16
0
 def plot_pvalue_hist(self, bins=60, fontsize=16, rotation=0):
     pylab.hist(self.df.pvalue.dropna(), bins=bins, ec="k")
     pylab.grid(True)
     pylab.xlabel("raw p-value", fontsize=fontsize)
     pylab.ylabel("Occurences", fontsize=fontsize)
     try:
         pylab.tight_layout()
     except:
         pass
Пример #17
0
    def barplot_per_sample(self, alpha=0.5, width=0.8, filename=None):
        df = self.get_data_reads()

        # this is ugly but will do the job for now
        under = df.query("name=='Undetermined'")
        others = df.query("name!='Undetermined'")

        under = under.groupby("name").sum().reset_index()
        others = others.groupby("name").sum().reset_index()

        under = under[["name", "count"]].set_index("name")
        others = others[["name", "count"]].set_index("name")

        all_data = others.sort_index(ascending=False)
        all_data.columns = ["samples"]

        # appended at the end
        all_data.loc['undetermined'] = 0

        # revert back
        all_data = all_data.loc[::-1]

        # just for legend
        under.columns = ['undetermined']
        if all_data.sum().min() > 1e6:
            all_data /= 1e6
            under /= 1e6
            M = True
        else:
            M = False

        all_data.plot(kind="barh", alpha=alpha, zorder=1, width=width, ec='k')

        under.plot(kind="barh",
                   alpha=alpha,
                   color="red",
                   ax=pylab.gca(),
                   zorder=1,
                   width=width,
                   ec='k')
        pylab.ylim([-0.5, len(all_data) + 0.5])
        if len(all_data) < 100:
            pylab.yticks(range(len(all_data)), all_data.index)

        pylab.legend()
        pylab.grid(True, zorder=-1)
        if M:
            pylab.xlabel("Number of reads (M)")
        else:
            pylab.xlabel("Number of reads")
        try:
            pylab.tight_layout()
        except:
            pass
        if filename:
            pylab.savefig(filename, dpi=200)
Пример #18
0
    def plot_volcano_differences(self, mode="all"):
        cond1, cond2 = "cond1", "cond2"
        labels = [cond1, cond2]
        A = self.r1.df.loc[self.r1.gene_lists[mode]]
        B = self.r2.df.loc[self.r2.gene_lists[mode]]
        AB = set(A.index).intersection(set(B.index))
        Aonly = A.loc[set(A.index).difference(set(B.index))]
        Bonly = B.loc[set(B.index).difference(set(A.index))]
        Acommon = A.loc[AB]
        Bcommon = B.loc[AB]

        pylab.clf()
        pylab.plot(Acommon.log2FoldChange, -np.log10(Acommon.padj), marker="o",
            alpha=0.5, color="r", lw=0, label="Common in experiment 1", pickradius=4,
            picker=True)
        pylab.plot(Bcommon.log2FoldChange, -np.log10(Bcommon.padj), marker="o",
            alpha=0.5, color="orange", lw=0, label="Common in experiment 2", pickradius=4,
            picker=True)

        for x in AB:
            a_l = A.loc[x].log2FoldChange
            a_p = -np.log10(A.loc[x].padj)
            b_l = B.loc[x].log2FoldChange
            b_p = -np.log10(B.loc[x].padj)
            pylab.plot([a_l, b_l], [a_p, b_p], 'k', alpha=0.5)

        pylab.plot(Bonly.log2FoldChange, -np.log10(Bonly.padj), marker="*",
            alpha=0.5, color="blue", lw=0, label="In experiment 2 only", pickradius=4,
            picker=True)
        pylab.plot(Aonly.log2FoldChange, -np.log10(Aonly.padj), marker="*",
            alpha=0.5, color="cyan", lw=0, label="In experiment 1 only", pickradius=4,
            picker=True)

        for name, x in Bonly.iterrows():
            x1 = x.log2FoldChange
            y1 = -np.log10(x.padj)
            x2 = self.r1.df.loc[name].log2FoldChange
            y2 = -np.log10(self.r1.df.loc[name].padj)
            pylab.plot( [x1,x2], [y1,y2], ls="--", color='r')
        for name, x in Aonly.iterrows():
            x1 = x.log2FoldChange
            y1 = -np.log10(x.padj)
            x2 = self.r2.df.loc[name].log2FoldChange
            y2 = -np.log10(self.r2.df.loc[name].padj)
            pylab.plot( [x1,x2], [y1,y2], ls="-", color='r')


        pylab.axhline(1.33, alpha=0.5, ls="--", color="r")

        pylab.xlabel("log2 fold Change")
        pylab.ylabel("log10 adjusted p-values")
        pylab.legend()
        pylab.grid(True)

        return Aonly, Bonly, Acommon, Bcommon
Пример #19
0
 def plot(self, fontsize=16):
     """plot quality versus base position"""
     pylab.plot(self.quality, label="offset: %s" % self.offset)
     pylab.xlabel('base position', fontsize=fontsize)
     pylab.ylabel('Quality per base', fontsize=fontsize)
     pylab.grid(True)
     # ylim set autoscale to off so if we want to call this function  several
     # times, we must reset autoscale to on before calling ylim
     pylab.autoscale()
     limits = pylab.ylim()
     pylab.ylim(max(0,limits[0]-1), limits[1]+1)
Пример #20
0
 def plot(self, fontsize=16):
     """plot quality versus base position"""
     pylab.plot(self.quality, label="offset: %s" % self.offset)
     pylab.xlabel('base position', fontsize=fontsize)
     pylab.ylabel('Quality per base', fontsize=fontsize)
     pylab.grid(True)
     # ylim set autoscale to off so if we want to call this function  several
     # times, we must reset autoscale to on before calling ylim
     pylab.autoscale()
     limits = pylab.ylim()
     pylab.ylim(max(0, limits[0] - 1), limits[1] + 1)
Пример #21
0
 def boxplot_mapq_concordance(self):
     # method can only be bwa for now
     assert self.method == "bwa"
     data = self._get_data()
     df = pd.DataFrame(data, columns=["mapq", "length", "concordance"])
     pylab.clf()
     pylab.boxplot([df[df.mapq == i]['concordance'] for i in range(1,61)])
     pylab.xlabel("mapq")
     pylab.ylabel("concordance")
     pylab.grid()
     tt = [10,20,30,40,50,60]
     pylab.xticks(tt, tt)
Пример #22
0
 def plot_genesets_hist(self, bins=20):
     N = len(self.gene_sets.keys())
     pylab.clf()
     pylab.hist([len(v) for k, v in self.gene_sets.items()],
                bins=bins,
                lw=1,
                ec="k")
     pylab.title("{} gene sets".format(N))
     pylab.xlabel("Gene set sizes")
     pylab.grid(True)
     a, b = pylab.xlim()
     pylab.xlim([0, b])
Пример #23
0
    def plot_indel_dist(self, fontsize=16):
        """Plot indel count (+ ratio)

        :Return: list of insertions, deletions and ratio insertion/deletion for
            different length starting at 1

        .. plot::
            :include-source:

            from sequana import sequana_data, BAM
            b = BAM(sequana_data("measles.fa.sorted.bam"))
            b.plot_indel_dist()

        What you see on this figure is the presence of 10 insertions of length
        1, 1 insertion of length 2 and 3 deletions of length 1


        # Note that in samtools, several insertions or deletions in a single
        alignment are ignored and only the first one seems to be reported. For
        instance 10M1I10M1I stored only 1 insertion in its report; Same comment
        for deletions.

        .. todo:: speed up and handle long reads cases more effitiently by 
            storing INDELS as histograms rather than lists
        """
        try:
            self.insertions
        except:
            self._set_indels()

        if len(self.insertions) ==0 or len(self.deletions) == 0:
            raise ValueError("No deletions or insertions found")

        N = max(max(Counter(self.deletions)), max(Counter(self.insertions))) + 1
        D = [self.deletions.count(i) for i in range(N)]
        I = [self.insertions.count(i) for i in range(N)]
        R = [i/d if d!=0 else 0 for i,d in zip(I, D)]
        fig, ax = pylab.subplots()
        ax.plot(range(N), I, marker="x", label="Insertions")
        ax.plot(range(N), D, marker="x", label="Deletions")
        ax.plot(range(N), R, "--r", label="Ratio insertions/deletions")
        ax.set_yscale("symlog")
        pylab.ylim([1, pylab.ylim()[1]])
        pylab.legend()
        pylab.grid()
        from matplotlib.ticker import MaxNLocator
        ax.xaxis.set_major_locator(MaxNLocator(integer=True))
        pylab.xlabel("Indel length", fontsize=fontsize)
        pylab.ylabel("Indel count", fontsize=fontsize)
        return I, D, R
Пример #24
0
    def hist_coverage(self, bins=100):
        """

        .. plot::
            :include-source:

            from sequana import sequana_data, BAM
            b = BAM(sequana_data("measles.fa.sorted.bam"))
            b.hist_coverage()
        """
        try: self.coverage
        except: self._set_coverage()
        pylab.hist(self.coverage, bins=bins)
        pylab.xlabel("Coverage")
        pylab.ylabel("Number of mapped bases")
        pylab.grid()
Пример #25
0
    def hist_length_repeats(self, bins=20, alpha=0.5, hold=False,
            fontsize=12, grid=True, title="Repeat length",
            xlabel="Repeat length", ylabel="#", logy=True):
        """Plots histogram of the repeat lengths

        """
        # check that user has set a threshold
        if hold is False:
            pylab.clf()
        pylab.hist(self.list_len_repeats, alpha=alpha, bins=bins)
        pylab.title(title)
        pylab.xlabel(xlabel, fontsize=fontsize)
        pylab.ylabel(ylabel, fontsize=fontsize)
        if grid is True:
            pylab.grid(True)
        if logy:
            pylab.semilogy()
Пример #26
0
    def plot_read_length(self):
        """Plot occurences of aligned read lengths

        .. plot::
            :include-source:

            from sequana import sequana_data, BAM
            b = BAM(sequana_data("test.bam"))
            b.plot_read_length()

        """
        X, Y = self._get_read_length()
        pylab.plot(X, Y,
            label="min length:{}; max length:{}".format(min(X), max(X)))
        pylab.grid()
        pylab.xlabel("Read length", fontsize=16)
        pylab.legend()
Пример #27
0
    def histogram_gc_content(self):
        """Plot histogram of GC content

        .. plot::
            :include-source:

            from sequana import sequana_data
            from sequana import FastQC
            filename  = sequana_data("test.fastq", "testing")
            qc = FastQC(filename)
            qc.histogram_gc_content()

        """
        pylab.hist(self.gc_list, bins=range(0, 100))
        pylab.grid()
        pylab.title("GC content distribution (per sequence)")
        pylab.xlabel(r"Mean GC content (%)", fontsize=self.fontsize)
        pylab.xlim([0,100])
Пример #28
0
    def hist_GC(self, bins=50, alpha=0.5, hold=False, fontsize=12,
                grid=True, xlabel="GC %", ylabel="#", label="",title=None):
        """Plot histogram GC content

        :param int bins: binning for the histogram
        :param float alpha: transparency of the histograms
        :param bool hold:
        :param int fontsize: fontsize of the x and y labels and title.
        :param bool grid: add grid or not
        :param str xlabel:
        :param str ylabel:
        :param str label: label of the histogram (for the legend)
        :param str title:

        .. plot::
            :include-source:

            from sequana.pacbio import PacbioSubreads
            from sequana import sequana_data
            b = PacbioSubreads(sequana_data("test_pacbio_subreads.bam"))
            b.hist_GC()

        """
        mean_GC =  np.mean(self.df.loc[:,'GC_content'])

        # set title if needed
        if title is None:
            title = "GC %%  \n Mean GC : %.2f" %(mean_GC)

        # histogram GC percent
        if hold is False:
            pylab.clf()
        pylab.hist(self.df.loc[:,'GC_content'], bins=bins,
            alpha=alpha, label=label + ", mean : " + str(round(mean_GC, 2))
            + ", N : " + str(len(self)))
        pylab.xlabel(xlabel, fontsize=fontsize)
        pylab.ylabel(ylabel, fontsize=fontsize)
        pylab.title(title, fontsize=fontsize)
        if grid is True:
            pylab.grid(True)
        pylab.xlim([0, 100])
        try: pylab.tight_layout()
        except:pass
Пример #29
0
    def plot_acgt_content(self, stacked=False):
        """Plot histogram of GC content

        .. plot::
            :include-source:

            from sequana import sequana_data
            from sequana import FastQC
            filename  = sequana_data("test.fastq", "testing")
            qc = FastQC(filename)
            qc.plot_acgt_content()
        """
        df = self.get_actg_content()
        if stacked is True:
            df.plot.bar(stacked=True)
        else:
            df.plot()
            pylab.grid(True)
        pylab.xlabel("position (bp)", fontsize=self.fontsize)
        pylab.ylabel("percent", fontsize=self.fontsize)
Пример #30
0
    def hist_nb_passes(self, bins=None, alpha=0.5, hold=False, fontsize=12,
                          grid=True, xlabel="Number of ZMW passes", logy=True,
                          ylabel="#", label="", title="Number of ZMW passes"):
        """Plot histogram of number of reads per ZMW (number of passes)

        :param float alpha: transparency of the histograms
        :param bool hold:
        :param int fontsize:
        :param bool grid:
        :param str xlabel:
        :param str ylabel:
        :param bool logy: use log scale on the y axis (default to True)
        :param str label: label of the histogram (for the legend)
        :param str title:

        .. plot::
            :include-source:

            from sequana.pacbio import PacbioSubreads
            from sequana import sequana_data
            b = PacbioSubreads(sequana_data("test_pacbio_subreads.bam"))
            b.hist_nb_passes()
        """
        max_nb_pass = self.df.nb_passes.max()
        if bins is None:
            k = range(1, max_nb_pass+1)

        # histogram nb passes
        if hold is False:
            pylab.clf()
        pylab.hist(self.df.nb_passes, bins=bins, alpha=alpha,
                   label=label, log=logy, width=1)
        if len(k) < 5:
            pylab.xticks(range(6), range(6))

        pylab.xlabel(xlabel, fontsize=fontsize)
        pylab.ylabel(ylabel, fontsize=fontsize)
        pylab.title(title, fontsize=fontsize)
        if grid is True:
            pylab.grid(True)
Пример #31
0
    def plot(self, bins=80, rwidth=0.8, **kwargs):
        pylab.clf()
        Y, X, _ = pylab.hist(self.data, bins=bins, rwidth=rwidth, **kwargs)

        pylab.xlabel(self.xlabel, fontsize=self.fontsize)
        pylab.ylabel(self.ylabel, fontsize=self.fontsize)

        """self.Y = Y
        self.X = X

        ax_twin = pylab.gca().twinx()

        shift = (X[1] - X[0]) / 2

        ax_twin.plot(X[0:-1]- shift, len(self.data) - pylab.cumsum(Y), "k")
        ax_twin.set_ylim(bottom=0)
        pylab.ylabel("CDF", fontsize=self.fontsize)
        """
        pylab.grid(self.grid)
        pylab.title(self.title)
        try: pylab.tight_layout()
        except:pass
Пример #32
0
    def plot_GC_read_len(self, hold=False, fontsize=12, bins=[200, 60],
                grid=True, xlabel="GC %", ylabel="#", cmap="BrBG"):
        """Plot GC content versus read length

        :param bool hold:
        :param int fontsize: for x and y labels and title
        :param bins: a integer or tuple of 2 integers to specify
            the binning of the x and y 2D histogram.
        :param bool grid:
        :param str xlabel:
        :param str ylabel:

        .. plot::
            :include-source:

            from sequana.pacbio import PacbioSubreads
            from sequana import sequana_data
            b = PacbioSubreads(sequana_data("test_pacbio_subreads.bam"))
            b.plot_GC_read_len(bins=[10, 10])

        """
        mean_len =  np.mean(self.df.loc[:,'read_length'])
        mean_GC =  np.mean(self.df.loc[:,'GC_content'])

        if hold is False:
            pylab.clf()

        data = self.df.loc[:,['read_length','GC_content']].dropna()
        h = biokit.viz.hist2d.Hist2D(data)
        res = h.plot(bins=bins, contour=False, norm='log', Nlevels=6, cmap=cmap)
        pylab.xlabel("Read length", fontsize=fontsize)
        pylab.ylabel("GC %", fontsize=fontsize)
        pylab.title("GC %% vs length \n Mean length : %.2f , Mean GC : %.2f" %
            (mean_len, mean_GC), fontsize=fontsize)
        pylab.ylim([0, 100])
        if grid is True:
            pylab.grid(True)