def main(): obs1 = srk.Observation(np.loadtxt("data000.txt")) obs2 = srk.Observation(np.loadtxt("data001.txt")) obs3 = srk.Observation(np.loadtxt("data002.txt")) obs4 = srk.Observation(np.loadtxt("data003.txt")) obs5 = srk.Observation(np.loadtxt("data004.txt")) category = np.loadtxt("data_category.txt") mlda1 = mlda.MLDA(10, [100], category=category) mlda2 = mlda.MLDA(10, [100, 100], category=category) mlda3 = mlda.MLDA(10, [100, 100], category=category) mlda4 = mlda.MLDA(10, [100, 100], category=category) mlda5 = mlda.MLDA(10, [100, 100], category=category) mlda1.connect(obs1) mlda2.connect(mlda1, obs2) mlda3.connect(mlda2, obs3) mlda4.connect(mlda3, obs4) mlda5.connect(mlda4, obs5) for it in range(5): mlda1.update() mlda2.update() mlda3.update() mlda4.update() mlda5.update()
def main(): obs1 = srk.Observation(np.loadtxt("data1.txt")) obs2 = srk.Observation(np.loadtxt("data2.txt")) category = np.loadtxt("category.txt") vae1 = vae_model(10, epoch=200, batch_size=500) gmm1 = gmm.GMM(10, category=category) nn1 = NN_model(itr1=500, itr2=2000, batch_size1=500, batch_size2=500) vae1.connect(obs1) gmm1.connect(vae1) nn1.connect(gmm1, obs2) for i in range(10): print(i) vae1.update() gmm1.update() nn1.update()
def main(): obs1 = srk.Observation(np.loadtxt("data1.txt")) obs2 = srk.Observation(np.loadtxt("data2.txt")) data_category = np.loadtxt("category.txt") vae1 = vae_model(18, epoch=200, batch_size=500) gmm1 = gmm.GMM(10, category=data_category) mlda1 = mlda.MLDA(10, [200, 200], category=data_category) vae1.connect(obs1) gmm1.connect(vae1) mlda1.connect(obs2, gmm1) for i in range(5): print(i) vae1.update() gmm1.update() mlda1.update()
def main(): obs1 = srk.Observation(np.loadtxt("dsift.txt")) # 視覚 obs2 = srk.Observation(np.loadtxt("mfcc.txt")) # 聴覚 obs3 = srk.Observation(np.loadtxt("tactile.txt")) # 触覚 obs4 = srk.Observation(np.loadtxt("angle.txt")) # 関節角 object_category = np.loadtxt("object_category.txt") motion_category = np.loadtxt("motion_category.txt") mlda1 = mlda.MLDA(10, [200, 200, 200], category=object_category) mlda2 = mlda.MLDA(10, [200], category=motion_category) mlda3 = mlda.MLDA(10, [100, 100]) mlda1.connect(obs1, obs2, obs3) mlda2.connect(obs4) mlda3.connect(mlda1, mlda2) for it in range(5): print(it) mlda1.update() mlda2.update() mlda3.update()
def main(): obs = srk.Observation(np.loadtxt("data.txt")) data_category = np.loadtxt("category.txt") vae1 = vae_model(18, epoch=200, batch_size=500) gmm1 = gmm.GMM(10, category=data_category) vae1.connect(obs) gmm1.connect(vae1) for i in range(5): print(i) vae1.update() gmm1.update()
def main(): obs1 = CNN.CNNFeatureExtractor( ["images/%03d.png"%i for i in range(6)] ) obs2 = srk.Observation( np.loadtxt("histogram_w.txt") ) mlda1 = mlda.MLDA(3, [1000]) mlda2 = mlda.MLDA(3, [50]) mlda3 = mlda.MLDA(3, [50,50]) mlda1.connect( obs1 ) mlda2.connect( obs2 ) mlda3.connect( mlda1, mlda2 ) for it in range(5): mlda1.update() mlda2.update() mlda3.update()
def main(): obs = srk.Observation(np.loadtxt("data.txt")) data_category = np.loadtxt("category.txt") vae1 = vae.VAE(18, itr=200, batch_size=500) gmm1 = gmm.GMM(10, category=data_category) mm1 = mm.MarkovModel() vae1.connect(obs) gmm1.connect(vae1) mm1.connect(gmm1) for i in range(5): print(i) vae1.update() gmm1.update() mm1.update()
def main(): obs = srk.Observation(np.loadtxt("data.txt")) correct_classes = np.loadtxt("correct.txt") # GMM単体 g = gmm.GMM(4, category=correct_classes) g.connect(obs) g.update() # GMMとマルコフモデルを結合したモデル g = gmm.GMM(4, category=correct_classes) m = mm.MarkovModel() g.connect(obs) m.connect(g) for itr in range(5): g.update() m.update()