Пример #1
0
    def run_optimization(self, end_date, start_date, mu_ml):
        rebalance_date = (datetime.strptime(end_date, "%Y-%m-%d") +
                          relativedelta(months=6, days=1)).strftime("%Y-%m-%d")
        rebalance_date = datetime.strftime(
            pd.bdate_range(end_date, rebalance_date)[-1], "%Y-%m-%d")
        prices = get_data(self.tickers,
                          'adjClose',
                          start_date,
                          end_date,
                          save=False)
        factors = fama_french(start_date, end_date, save=False)
        returns = (prices / prices.shift(1) - 1).dropna()[:len(factors)]
        R = returns.values

        ## *********************************************************************************************************************
        #  factor model
        ## *********************************************************************************************************************

        factors.drop('RF', axis=1, inplace=True)
        F = np.hstack((np.atleast_2d(np.ones(factors.shape[0])).T, factors))
        transmat, loadings, covarainces = regime_switch(R, F, self.tickers)
        baseline = 30
        regime = current_regime(R, F, loadings, baseline)

        # get the number of days until the next scheduled rebalance
        days = business_days((datetime.strptime(end_date, "%Y-%m-%d") +
                              relativedelta(days=1)).strftime("%Y-%m-%d"),
                             rebalance_date)

        # get the estimate returns and covariances from the factor model
        mu_rsfm = pd.DataFrame(days *
                               expected_returns(F, transmat, loadings, regime),
                               index=self.tickers,
                               columns=['returns'])
        cov_rsfm = pd.DataFrame(
            days * covariance(R, F, transmat, loadings, covarainces, regime),
            index=self.tickers,
            columns=self.tickers)

        # write estimates to a csv file
        mu_rsfm.to_csv(os.getcwd() + r'/data/mu_rsfm.csv')
        cov_rsfm.to_csv(os.getcwd() + r'/data/cov_rsfm.csv')
        mktcap = get_mkt_cap(self.tickers, save=True)

        # calculate the market coefficient
        l = (gmean(factors.iloc[-days:, :]['MKT'] + 1, axis=0) -
             1) / factors.iloc[-days:, :]['MKT'].var()

        mu_bl1, cov_bl1 = bl(tickers=self.tickers,
                             l=l,
                             tau=1,
                             mktcap=mktcap,
                             Sigma=returns.iloc[-days:, :].cov().values * days,
                             P=np.identity(len(self.tickers)),
                             Omega=np.diag(np.diag(cov_rsfm)),
                             q=mu_rsfm.values,
                             adjust=False)

        #mu_ml = mu_bl1.mul(pd.DataFrame(1 + np.random.uniform(-0.05, 0.1, len(tickers)), index=mu_bl1.index, columns=mu_bl1.columns))
        mu_ml = pd.DataFrame(mu_ml, columns=['returns'])
        mu_bl2, cov_bl2 = bl(tickers=self.tickers,
                             l=l,
                             tau=1,
                             mktcap=mktcap,
                             Sigma=returns.iloc[-days:, :].cov().values * days,
                             P=np.identity(len(self.tickers)),
                             Omega=np.diag(np.diag(cov_rsfm)),
                             q=mu_ml.values,
                             adjust=True)

        cost = costs(
            tickers=self.tickers,
            cov=cov_rsfm,
            prices=prices.iloc[-2, :] if
            prices.iloc[-1, :].isnull().values.any() else prices.iloc[-1, :],
            start_date=(datetime.strptime(end_date, "%Y-%m-%d") -
                        relativedelta(years=1)).strftime("%Y-%m-%d"),
            end_date=end_date,
            alpha=5)

        risk_tolerance = [((1, 10), (0, 0.10)), ((5, 5), (0, 0.20)),
                          ((10, 1), (-0.05, 0.30))]

        soln = optimize(mu=(mu_bl1.values.ravel(), mu_bl2.values.ravel()),
                        sigma=(cov_bl1.values, cov_bl2.values),
                        alpha=(0.05, 0.10),
                        return_target=(0.05, 0.05),
                        costs=cost,
                        prices=prices.iloc[-2, :].values
                        if prices.iloc[-1, :].isnull().values.any() else
                        prices.iloc[-1, :].values,
                        gamma=risk_tolerance[2])

        x1 = pd.DataFrame(soln.x[:int(len(mu_bl1))],
                          index=mu_bl1.index,
                          columns=['weight'])
        x2 = pd.DataFrame(soln.x[int(len(mu_bl2)):],
                          index=mu_bl2.index,
                          columns=['weight'])
        print(
            '\n\n********************************************************************'
        )
        print('\tperiod one results')
        print(
            '********************************************************************\n'
        )

        #print(x1)

        print("\nportfolio return: %f" % (ret(mu_bl1, x1) * 100))
        print("portfolio volatility: %f" % (vol(cov_bl1, x1) * 100))
        print("portfolio var%f: %f" %
              (1 - 0.05, var(mu_bl1, cov_bl1, 0.05, x1)))
        print("portfolio cvar%f: %f" %
              (1 - 0.05, cvar(mu_bl1, cov_bl1, 0.05, x1)))

        print(
            '\n\n********************************************************************'
        )
        print('\tperiod two results')
        print(
            '********************************************************************\n'
        )

        #print(x2)

        print("\nportfolio return: %f" % (ret(mu_bl2, x1) * 100))
        print("portfolio volatility: %f" % (vol(cov_bl2, x1) * 100))
        print("portfolio var%f: %f" %
              (1 - 0.05, var(mu_bl2, cov_bl2, 0.05, x1)))
        print("portfolio cvar%f: %f" %
              (1 - 0.05, cvar(mu_bl2, cov_bl2, 0.05, x1)))

        return (ret(mu_bl2, x1) * 100)
Пример #2
0
print('\nbased on the last %d trading days, the best fitted regime is %d' % (baseline, regime))


## *********************************************************************************************************************
#  expeceted mean and variances from the factor model
## *********************************************************************************************************************

print('\n\n********************************************************************')
print('\tcalculating period one estimates')
print('********************************************************************')

# get the number of days until the next scheduled rebalance
days = business_days((datetime.strptime(end_date, "%Y-%m-%d") + relativedelta(days=1)).strftime("%Y-%m-%d"), rebalance_date)

# get the estimate returns and covariances from the factor model
mu_rsfm = pd.DataFrame(days * expected_returns(F, transmat, loadings, regime), index=tickers, columns=['returns'])
cov_rsfm = pd.DataFrame(days * covariance(R, F, transmat, loadings, covarainces, regime), index=tickers, columns=tickers)

# write estimates to a csv file
mu_rsfm.to_csv(os.getcwd() + BASEPATH + r'/data/mu_rsfm.csv')
cov_rsfm.to_csv(os.getcwd() +BASEPATH +  r'/data/cov_rsfm.csv')

print('\nexpected returns from the factor model')
print(mu_rsfm)

print('\nexpected covariance from the factor model')
print(cov_rsfm)



Пример #3
0
def prepare():
    #tickers = list(pd.read_csv(os.getcwd() + r'/data/tickers.csv')['Tickers'])
    tickers = SYMBOLS
    end_date = datetime.now().strftime("%Y-%m-%d")
    start_date = (datetime.strptime(end_date, "%Y-%m-%d") -
                  relativedelta(years=6)).strftime("%Y-%m-%d")

    # target rebalance date ... based on calendar days ... need to adjust for trading days
    rebalance_date = (datetime.strptime(end_date, "%Y-%m-%d") +
                      relativedelta(months=6, days=1)).strftime("%Y-%m-%d")
    rebalance_date = datetime.strftime(
        pd.bdate_range(end_date, rebalance_date)[-1], "%Y-%m-%d")

    np.set_printoptions(precision=4)

    ## *********************************************************************************************************************
    #  pull the factors and asset prices
    ## *********************************************************************************************************************

    print(
        '\n\n********************************************************************'
    )
    print('\tretrieving asset prices')
    print(
        '********************************************************************')

    prices = get_data(tickers,
                      'adjClose',
                      start_date,
                      end_date,
                      save=False,
                      fail_safe=True)
    print(prices.tail(10))

    print(
        '\n\n********************************************************************'
    )
    print('\tretrieving factor data')
    print(
        '********************************************************************')

    factors = fama_french(start_date, end_date, save=True)
    print(factors.tail(10))

    print(
        '\n\n********************************************************************'
    )
    print('risk adjusted returns')
    print(
        '********************************************************************')

    returns = (prices / prices.shift(1) - 1).dropna()[:len(factors)]
    R = returns.values
    print(
        pd.DataFrame(R, index=factors.index, columns=prices.columns).tail(10))

    ## *********************************************************************************************************************
    #  factor model
    ## *********************************************************************************************************************

    factors.drop('RF', axis=1, inplace=True)
    F = np.hstack((np.atleast_2d(np.ones(factors.shape[0])).T, factors))

    print(
        '\n\n********************************************************************'
    )
    print('\tfitting the factor model')
    print(
        '********************************************************************')

    transmat, loadings, covarainces = regime_switch(R, F, tickers)

    print('\n\ntransition matrix')
    print(transmat)

    for i in range(2):
        print('\n\nregime %d' % (i + 1))

        print('\nfactor loadings matrix')
        print(loadings[i])

        print("\ncovariance matrix")
        print(covarainces[i])

    # see what regime best fits the most recent data (# days = baseline)
    baseline = 30
    regime = current_regime(R, F, loadings, baseline)
    print('\nbased on the last %d trading days, the best fitted regime is %d' %
          (baseline, regime))

    ## *********************************************************************************************************************
    #  expeceted mean and variances from the factor model
    ## *********************************************************************************************************************

    print(
        '\n\n********************************************************************'
    )
    print('\tcalculating period one estimates')
    print(
        '********************************************************************')

    # get the number of days until the next scheduled rebalance
    days = business_days((datetime.strptime(end_date, "%Y-%m-%d") +
                          relativedelta(days=1)).strftime("%Y-%m-%d"),
                         rebalance_date)

    # get the estimate returns and covariances from the factor model
    mu_rsfm = pd.DataFrame(days *
                           expected_returns(F, transmat, loadings, regime),
                           index=tickers,
                           columns=['returns'])
    cov_rsfm = pd.DataFrame(
        days * covariance(R, F, transmat, loadings, covarainces, regime),
        index=tickers,
        columns=tickers)

    # write estimates to a csv file
    #mu_rsfm.to_csv(os.getcwd() + r'/data/mu_rsfm.csv')
    #cov_rsfm.to_csv(os.getcwd() + r'/data/cov_rsfm.csv')

    print('\nexpected returns from the factor model')
    print(mu_rsfm)

    print('\nexpected covariance from the factor model')
    print(cov_rsfm)

    ## *********************************************************************************************************************
    #  black litterman for period one returns
    ## *********************************************************************************************************************

    mktcap = get_mkt_cap(tickers, save=True)

    print("\nmarket cap data")
    print(mktcap)

    # calculate the market coefficient
    l = (gmean(factors.iloc[-days:, :]['MKT'] + 1, axis=0) -
         1) / factors.iloc[-days:, :]['MKT'].var()

    mu_bl1, cov_bl1 = bl(tickers=tickers,
                         l=l,
                         tau=1,
                         mktcap=mktcap,
                         Sigma=returns.iloc[-days:, :].cov().values * days,
                         P=np.identity(len(tickers)),
                         Omega=np.diag(np.diag(cov_rsfm)),
                         q=mu_rsfm.values,
                         adjust=False)

    print('\nperiod one returns')
    print(mu_bl1)

    print('\nperiod one covariances')
    print(cov_bl1)

    ## *********************************************************************************************************************
    #  AIDAN ML ... pass along a new returns dataframe, mu_ml, with the same format as mu_rsfm
    ## *********************************************************************************************************************

    print(
        '\n\n********************************************************************'
    )
    print('\tcalculating period two estimates')
    print(
        '********************************************************************')

    # temp mu_ml
    #mu_ml = mu_bl1.mul(
    #    pd.DataFrame(1 + np.random.uniform(-0.05, 0.1, len(tickers)), index=mu_bl1.index, columns=mu_bl1.columns))
    df = pd.DataFrame()
    df['prices'] = prices.apply(lambda x: ','.join(x.astype(str)), axis=1)
    df['prices'] = df.prices.apply(lambda x: [float(y) for y in x.split(',')])
    #df.prices = df.prices.apply(lambda x: ast.literal_eval(x))
    mu_ml = predict(torch.FloatTensor(
        df['prices'].iloc[-1:].values.tolist()).transpose(0, 1),
                    check_ml=mu_bl1,
                    tickers=tickers)
    ## *********************************************************************************************************************
    #  black litterman for period two returns
    ## *********************************************************************************************************************

    mu_bl2, cov_bl2 = bl(tickers=tickers,
                         l=l,
                         tau=1,
                         mktcap=mktcap,
                         Sigma=returns.iloc[-days:, :].cov().values * days,
                         P=np.identity(len(tickers)),
                         Omega=np.diag(np.diag(cov_rsfm)),
                         q=mu_ml.values,
                         adjust=True)

    print('\nperiod two returns')
    print(mu_bl2)

    print('\nperiod two covariances')
    print(cov_bl2)

    ## *********************************************************************************************************************
    #  calculate transaction cost coefficients
    ## *********************************************************************************************************************

    print(
        '\n\n********************************************************************'
    )
    print('\tcalculating cost coefficients')
    print(
        '********************************************************************')

    cost = costs(
        tickers=tickers,
        cov=cov_rsfm,
        prices=prices.iloc[-2, :]
        if prices.iloc[-1, :].isnull().values.any() else prices.iloc[-1, :],
        start_date=(datetime.strptime(end_date, "%Y-%m-%d") -
                    relativedelta(years=1)).strftime("%Y-%m-%d"),
        end_date=end_date,
        alpha=5)

    print('\ncost coefficients')
    print(cost)

    return (mu_bl1.values.ravel(), mu_bl2.values.ravel()), (
        cov_bl1.values,
        cov_bl2.values), cost, prices.iloc[-2, :].values if prices.iloc[
            -1, :].isnull().values.any() else prices.iloc[-1, :].values
Пример #4
0
def get_params_for_optimization():
    tickers = SYMBOLS

    end_date = datetime.now().strftime("%Y-%m-%d")
    start_date = (datetime.strptime(end_date, "%Y-%m-%d") -
                  relativedelta(years=10)).strftime("%Y-%m-%d")

    # target rebalance date ... based on calendar days ... need to adjust for trading days
    rebalance_date = (datetime.strptime(end_date, "%Y-%m-%d") +
                      relativedelta(months=6, days=1)).strftime("%Y-%m-%d")
    rebalance_date = datetime.strftime(
        pd.bdate_range(end_date, rebalance_date)[-1], "%Y-%m-%d")

    np.set_printoptions(precision=4)

    ## *********************************************************************************************************************
    #  pull the factors and asset prices
    ## *********************************************************************************************************************

    print(
        '\n\n********************************************************************'
    )
    print('\tretrieving asset prices')
    print(
        '********************************************************************')

    prices = get_data(tickers, 'adjClose', start_date, end_date,
                      save=True).dropna()  # Stored
    print(prices.tail(10))

    print(
        '\n\n********************************************************************'
    )
    print('\tretrieving factor data')
    print(
        '********************************************************************')

    factors = fama_french(start_date, end_date, save=True)
    print(factors.tail(10))

    print(
        '\n\n********************************************************************'
    )
    print('risk adjusted returns')
    print(
        '********************************************************************')

    returns = (prices / prices.shift(1) - 1).dropna()[:len(factors)]  # Stored
    R = returns.values  # Stored
    print(
        pd.DataFrame(R, index=factors.index, columns=prices.columns).tail(10))

    ## *********************************************************************************************************************
    #  factor model
    ## *********************************************************************************************************************

    factors.drop('RF', axis=1, inplace=True)
    factors = factors[:len(returns)]

    F = np.hstack((np.atleast_2d(np.ones(factors.shape[0])).T, factors))

    print(
        '\n\n********************************************************************'
    )
    print('\tfitting the factor model')
    print(
        '********************************************************************')

    transmat, loadings, covarainces = regime_switch(R, F, tickers)  # Stored

    # transmat - dataframe?
    # loadings - np array
    # cov

    print('\n\ntransition matrix')
    print(transmat)

    for i in range(2):
        print('\n\nregime %d' % (i + 1))

        print('\nfactor loadings matrix')
        print(loadings[i])

        print("\ncovariance matrix")
        print(covarainces[i])

    # see what regime best fits the most recent data (# days = baseline)
    baseline = 30
    regime = current_regime(R, F, loadings, baseline)
    print('\nbased on the last %d trading days, the best fitted regime is %d' %
          (baseline, regime))

    ## *********************************************************************************************************************
    #  expeceted mean and variances from the factor model
    ## *********************************************************************************************************************

    print(
        '\n\n********************************************************************'
    )
    print('\tcalculating period one estimates')
    print(
        '********************************************************************')

    # get the number of days until the next scheduled rebalance
    days = business_days((datetime.strptime(end_date, "%Y-%m-%d") +
                          relativedelta(days=1)).strftime("%Y-%m-%d"),
                         rebalance_date)

    # get the estimate returns and covariances from the factor model
    mu_rsfm = pd.DataFrame(days *
                           expected_returns(F, transmat, loadings, regime),
                           index=tickers,
                           columns=['returns'])
    cov_rsfm = pd.DataFrame(
        days * covariance(R, F, transmat, loadings, covarainces, regime),
        index=tickers,
        columns=tickers)

    # write estimates to a csv file
    # mu_rsfm.to_csv(os.getcwd() + BASEPATH + r'/data/mu_rsfm.csv')
    # cov_rsfm.to_csv(os.getcwd() +BASEPATH +  r'/data/cov_rsfm.csv')

    print('\nexpected returns from the factor model')
    print(mu_rsfm)

    print('\nexpected covariance from the factor model')
    print(cov_rsfm)

    ## *********************************************************************************************************************
    #  black litterman for period one returns
    ## *********************************************************************************************************************

    mktcap = get_mkt_cap(tickers, save=True)  # Stored Daily

    print("\nmarket cap data")
    print(mktcap)

    # calculate the market coefficient
    l = (gmean(factors.iloc[-days:, :]['MKT'] + 1, axis=0) -
         1) / factors.iloc[-days:, :]['MKT'].var()  # Stored

    mu_bl1, cov_bl1 = bl(tickers=tickers,
                         l=l,
                         tau=1,
                         mktcap=mktcap,
                         Sigma=returns.iloc[-days:, :].cov().values * days,
                         P=np.identity(len(tickers)),
                         Omega=np.diag(np.diag(cov_rsfm)),
                         q=mu_rsfm.values,
                         adjust=False)  # Stored

    print('\nperiod one returns')
    print(mu_bl1)

    print('\nperiod one covariances')
    print(cov_bl1)

    ## *********************************************************************************************************************
    #  AIDAN ML ... pass along a new returns dataframe, mu_ml, with the same format as mu_rsfm
    ## *********************************************************************************************************************

    print(
        '\n\n********************************************************************'
    )
    print('\tcalculating period two estimates')
    print(
        '********************************************************************')

    # temp mu_ml
    mu_ml = mu_bl1.mul(
        pd.DataFrame(1 + np.random.uniform(-0.05, 0.1, len(tickers)),
                     index=mu_bl1.index,
                     columns=mu_bl1.columns))  # Stored

    ## *********************************************************************************************************************
    #  black litterman for period two returns
    ## *********************************************************************************************************************

    mu_bl2, cov_bl2 = bl(tickers=tickers,
                         l=l,
                         tau=1,
                         mktcap=mktcap,
                         Sigma=returns.iloc[-days:, :].cov().values * days,
                         P=np.identity(len(tickers)),
                         Omega=np.diag(np.diag(cov_rsfm)),
                         q=mu_ml.values,
                         adjust=True)  # Stored inputs to optimization

    print('\nperiod two returns')
    print(mu_bl2)

    print('\nperiod two covariances')
    print(cov_bl2)

    ## *********************************************************************************************************************
    #  calculate transaction cost coefficients
    ## *********************************************************************************************************************

    print(
        '\n\n********************************************************************'
    )
    print('\tcalculating cost coefficients')
    print(
        '********************************************************************')

    cost = costs(
        tickers=tickers,
        cov=cov_rsfm,
        prices=prices.iloc[-2, :]
        if prices.iloc[-1, :].isnull().values.any() else prices.iloc[-1, :],
        start_date=(datetime.strptime(end_date, "%Y-%m-%d") -
                    relativedelta(years=1)).strftime("%Y-%m-%d"),
        end_date=end_date,
        alpha=5)  # Stored

    print('\ncost coefficients')
    print(cost)

    return {
        'mu_bl1': mu_bl1,
        'mu_bl2': mu_bl2,
        'cov_bl1': cov_bl1,
        'cov_bl2': cov_bl2,
        'cost': cost,
        'prices': prices
    }