# TODO: Implement unittests for setup.py from setup import read_config from setup import setup_model config = read_config("config.json") model, index2word, word2index = setup_model(datasets, config)
from setup import setup from utils import freeze_weights # Read in command line arguments parser = argparse.ArgumentParser() parser.add_argument("config_file", type=str, help="The path to the config file describing the model.") parser.add_argument("--freeze", action="store_true", default=False, help="Specifies whether the CNN layers are frozen.") args = parser.parse_args() # Setup the model config = read_config(args.config_file) _, model = setup(config) if args.freeze: print("Freezing weights of CNN layers.") model = freeze_weights(model) # Calculate total number of parameters and number of learnable parmaeters num_learnable_params = 0 num_params = 0 for name, weight in model.named_parameters(): params_in_weight = functools.reduce(operator.mul, list(weight.size()), 1) if weight.requires_grad: num_learnable_params += params_in_weight num_params += params_in_weight if weight.requires_grad:
# Parse command line arguments parser = argparse.ArgumentParser() parser.add_argument("--config_path", type=str, help="path to the config file") parser.add_argument("--checkpoint_path", type=str, help="path to the checkpoint file") parser.add_argument("--examples_path", type=str, help="path to examples file") parser.add_argument("--output_dir", type=str, help="output path for generated plots") args = parser.parse_args() # Sanity check inputs assert(os.path.isfile(args.config_path)) assert(os.path.isfile(args.checkpoint_path)) assert(os.path.isfile(args.examples_path)) # Read in the configuration file print("Reading config file from: {}".format(args.config_path)) config = read_config(args.config_path) # Create the model and overwrite its weights print("Creating model with weights from: {}".format(args.checkpoint_path)) model = setup_model(config) state = load_checkpoint(args.checkpoint_path) model_dict, _, _, _ = state model.load_state_dict(model_dict) # Create the individual blocks of the model use_all_layers = config["model"]["use_all_layers"] max_length = config["model"]["max_length"] embeddings_size = config["embeddings"]["size"] block_configs = config["model"]["blocks"] blocks = [] output_sizes = [embeddings_size]
parser.add_argument("--eval", action="store_true", default=False, help="evaluate a model") parser.add_argument("--path", default=None, help="path to model checkpoint") parser.add_argument("--freeze", action="store_true", default=False, help="freeze the weights in the conv-pool layers.") args = parser.parse_args() # Sanity check command line arguments assert (args.train or args.eval) # Basic setup config = read_config(args.config) datasets, model = setup_v2(config) loss_fn = nn.CrossEntropyLoss() optimizer = \ optim.Adagrad( filter(lambda p: p.requires_grad, model.parameters()), lr=config["optim"]["lr"], weight_decay=config["optim"]["weight_decay"] ) history = defaultdict(list) # Load trained model if specified if args.path is not None: print("Loading model from checkpoint...") state = load_checkpoint(args.path) model_dict, optim_dict, history, epoch = state
def setUp(self): cfg = setup.read_config() self.nbr_address = cfg.get('nbr','address') print "Setup - using NBR Address: ", self.nbr_address
print('Starting PowerDnThread') pwrdnthread = PowerDnThread() pwrdnthread.start() @socketio.on('connect', namespace='/test') def test_connect(): global thread if thread is None: thread = socketio.start_background_task(target=background_thread) #emit('my_response', {'data': 'Connected', 'count': 0}) @socketio.on('disconnect', namespace='/test') def test_disconnect(): print('Client disconnected', request.sid) def signal_handler(signal, frame1): GPIO.output(2, GPIO.HIGH) print('Exiting after GPIO.cleanup.') GPIO.cleanup() sys.exit(0) if __name__ == '__main__': signal.signal(signal.SIGINT, signal_handler) setup.read_config() setup.init_GPIO() socketio.run(app, host='0.0.0.0', port=5000, debug=True)
def __init__(self): Attack.__init__(self) JunkRemover.__init__(self) self.config = read_config()