def test_ics(self): from sfepy.discrete.conditions import Conditions, InitialCondition variables = self.variables omega = self.problem.domain.regions['Omega'] all_ics = [] all_ics.append(InitialCondition('ic0', omega, {'p.all': 0.0})) all_ics.append(InitialCondition('ic1', omega, {'u.1': 1.0})) all_ics.append( InitialCondition('ic2', omega, {'u.all': nm.array([0.0, 1.0])})) all_ics.append( InitialCondition('ic3', omega, { 'p.0': 0.0, 'u.0': 0.0, 'u.1': 1.0 })) ok = True for ii, ics in enumerate(all_ics): if not isinstance(ics, list): ics = [ics] ics = Conditions(ics) variables.setup_initial_conditions(ics, functions=None) vec = init_vec(variables) variables.apply_ic(vec) ok = check_vec(self, vec, ii, ok, ics, variables) return ok
def main(argv=None): options = parse_args(argv=argv) # vvvvvvvvvvvvvvvv # approx_order = 2 # ^^^^^^^^^^^^^^^^ # # Setup output names outputs_folder = options.output_dir domain_name = "domain_1D" problem_name = "iburgers_1D" output_folder = pjoin(outputs_folder, problem_name, str(approx_order)) output_format = "vtk" save_timestn = 100 clear_folder(pjoin(output_folder, "*." + output_format)) configure_output({ 'output_screen': True, 'output_log_name': pjoin(output_folder, f"last_run_{problem_name}_{approx_order}.txt") }) # ------------ # | Get mesh | # ------------ X1 = 0. XN = 1. n_nod = 100 n_el = n_nod - 1 mesh = get_gen_1D_mesh_hook(X1, XN, n_nod).read(None) # ----------------------------- # | Create problem components | # ----------------------------- integral = Integral('i', order=approx_order * 2) domain = FEDomain(domain_name, mesh) omega = domain.create_region('Omega', 'all') left = domain.create_region('Gamma1', 'vertices in x == %.10f' % X1, 'vertex') right = domain.create_region('Gamma2', 'vertices in x == %.10f' % XN, 'vertex') field = DGField('dgfu', nm.float64, 'scalar', omega, approx_order=approx_order) u = FieldVariable('u', 'unknown', field, history=1) v = FieldVariable('v', 'test', field, primary_var_name='u') MassT = Term.new('dw_dot(v, u)', integral, omega, u=u, v=v) velo = nm.array(1.0) def adv_fun(u): vu = velo.T * u[..., None] return vu def adv_fun_d(u): v1 = velo.T * nm.ones(u.shape + (1, )) return v1 burg_velo = velo.T / nm.linalg.norm(velo) def burg_fun(u): vu = burg_velo * u[..., None]**2 return vu def burg_fun_d(u): v1 = 2 * burg_velo * u[..., None] return v1 StiffT = Term.new('dw_ns_dot_grad_s(fun, fun_d, u[-1], v)', integral, omega, u=u, v=v, fun=burg_fun, fun_d=burg_fun_d) # alpha = Material('alpha', val=[.0]) # FluxT = AdvectDGFluxTerm("adv_lf_flux(a.val, v, u)", "a.val, v, u[-1]", # integral, omega, u=u, v=v, a=a, alpha=alpha) FluxT = Term.new('dw_dg_nonlinear_laxfrie_flux(fun, fun_d, v, u[-1])', integral, omega, u=u, v=v, fun=burg_fun, fun_d=burg_fun_d) eq = Equation('balance', MassT - StiffT + FluxT) eqs = Equations([eq]) # ------------------------------ # | Create boundary conditions | # ------------------------------ left_fix_u = EssentialBC('left_fix_u', left, {'u.all': 1.0}) right_fix_u = EssentialBC('right_fix_u', right, {'u.all': 0.0}) # ---------------------------- # | Create initial condition | # ---------------------------- def ghump(x): """ Nice gaussian. """ return nm.exp(-200 * x**2) def ic_wrap(x, ic=None): return ghump(x - .3) ic_fun = Function('ic_fun', ic_wrap) ics = InitialCondition('ic', omega, {'u.0': ic_fun}) # ------------------ # | Create problem | # ------------------ pb = Problem(problem_name, equations=eqs, conf=Struct(options={"save_times": save_timestn}, ics={}, ebcs={}, epbcs={}, lcbcs={}, materials={}), active_only=False) pb.setup_output(output_dir=output_folder, output_format=output_format) pb.set_ics(Conditions([ics])) # ------------------ # | Create limiter | # ------------------ limiter = MomentLimiter1D # --------------------------- # | Set time discretization | # --------------------------- CFL = .2 max_velo = nm.max(nm.abs(velo)) t0 = 0 t1 = .2 dx = nm.min(mesh.cmesh.get_volumes(1)) dt = dx / max_velo * CFL / (2 * approx_order + 1) tn = int(nm.ceil((t1 - t0) / dt)) dtdx = dt / dx # ------------------ # | Create solver | # ------------------ ls = ScipyDirect({}) nls_status = IndexedStruct() nls = Newton({'is_linear': True}, lin_solver=ls, status=nls_status) tss_conf = { 't0': t0, 't1': t1, 'n_step': tn, 'limiters': { "dgfu": limiter } } tss = TVDRK3StepSolver(tss_conf, nls=nls, context=pb, verbose=True) # --------- # | Solve | # --------- pb.set_solver(tss) state_end = pb.solve() output("Solved equation \n\n\t\t u_t - div(f(u))) = 0\n") output(f"With IC: {ic_fun.name}") # output("and EBCs: {}".format(pb.ebcs.names)) # output("and EPBCS: {}".format(pb.epbcs.names)) output("-------------------------------------") output(f"Approximation order is {approx_order}") output(f"Space divided into {mesh.n_el} cells, " + f"{len(mesh.coors)} steps, step size is {dx}") output(f"Time divided into {tn - 1} nodes, {tn} steps, step size is {dt}") output(f"CFL coefficient was {CFL} and " + f"order correction {1 / (2 * approx_order + 1)}") output(f"Courant number c = max(abs(u)) * dt/dx = {max_velo * dtdx}") output("------------------------------------------") output(f"Time stepping solver is {tss.name}") output(f"Limiter used: {limiter.name}") output("======================================") # ---------- # | Plot 1D| # ---------- if options.plot: load_and_plot_fun(output_folder, domain_name, t0, t1, min(tn, save_timestn), ic_fun)
def main(): from sfepy import data_dir parser = OptionParser(usage=usage, version='%prog') parser.add_option('--diffusivity', metavar='float', type=float, action='store', dest='diffusivity', default=1e-5, help=helps['diffusivity']) parser.add_option('--ic-max', metavar='float', type=float, action='store', dest='ic_max', default=2.0, help=helps['ic_max']) parser.add_option('--order', metavar='int', type=int, action='store', dest='order', default=2, help=helps['order']) parser.add_option('-r', '--refine', metavar='int', type=int, action='store', dest='refine', default=0, help=helps['refine']) parser.add_option('-p', '--probe', action="store_true", dest='probe', default=False, help=helps['probe']) parser.add_option('-s', '--show', action="store_true", dest='show', default=False, help=helps['show']) options, args = parser.parse_args() assert_((0 < options.order), 'temperature approximation order must be at least 1!') output('using values:') output(' diffusivity:', options.diffusivity) output(' max. IC value:', options.ic_max) output('uniform mesh refinement level:', options.refine) mesh = Mesh.from_file(data_dir + '/meshes/3d/cylinder.mesh') domain = FEDomain('domain', mesh) if options.refine > 0: for ii in xrange(options.refine): output('refine %d...' % ii) domain = domain.refine() output('... %d nodes %d elements' % (domain.shape.n_nod, domain.shape.n_el)) omega = domain.create_region('Omega', 'all') left = domain.create_region('Left', 'vertices in x < 0.00001', 'facet') right = domain.create_region('Right', 'vertices in x > 0.099999', 'facet') field = Field.from_args('fu', nm.float64, 'scalar', omega, approx_order=options.order) T = FieldVariable('T', 'unknown', field, history=1) s = FieldVariable('s', 'test', field, primary_var_name='T') m = Material('m', diffusivity=options.diffusivity * nm.eye(3)) integral = Integral('i', order=2 * options.order) t1 = Term.new('dw_diffusion(m.diffusivity, s, T)', integral, omega, m=m, s=s, T=T) t2 = Term.new('dw_volume_dot(s, dT/dt)', integral, omega, s=s, T=T) eq = Equation('balance', t1 + t2) eqs = Equations([eq]) # Boundary conditions. ebc1 = EssentialBC('T1', left, {'T.0': 2.0}) ebc2 = EssentialBC('T2', right, {'T.0': -2.0}) # Initial conditions. def get_ic(coors, ic): x, y, z = coors.T return 2 - 40.0 * x + options.ic_max * nm.sin(4 * nm.pi * x / 0.1) ic_fun = Function('ic_fun', get_ic) ic = InitialCondition('ic', omega, {'T.0': ic_fun}) ls = ScipyDirect({}) nls_status = IndexedStruct() nls = Newton({'is_linear': True}, lin_solver=ls, status=nls_status) pb = Problem('heat', equations=eqs, nls=nls, ls=ls) pb.set_bcs(ebcs=Conditions([ebc1, ebc2])) pb.set_ics(Conditions([ic])) tss = SimpleTimeSteppingSolver({ 't0': 0.0, 't1': 100.0, 'n_step': 11 }, problem=pb) tss.init_time() if options.probe: # Prepare probe data. probes, labels = gen_lines(pb) ev = pb.evaluate order = 2 * (options.order - 1) gfield = Field.from_args('gu', nm.float64, 'vector', omega, approx_order=options.order - 1) dvel = FieldVariable('dvel', 'parameter', gfield, primary_var_name='(set-to-None)') cfield = Field.from_args('gu', nm.float64, 'scalar', omega, approx_order=options.order - 1) component = FieldVariable('component', 'parameter', cfield, primary_var_name='(set-to-None)') nls_options = {'eps_a': 1e-16, 'i_max': 1} if options.show: plt.ion() # Solve the problem using the time stepping solver. suffix = tss.ts.suffix for step, time, state in tss(): if options.probe: # Probe the solution. dvel_qp = ev('ev_diffusion_velocity.%d.Omega(m.diffusivity, T)' % order, copy_materials=False, mode='qp') project_by_component(dvel, dvel_qp, component, order, nls_options=nls_options) all_results = [] for ii, probe in enumerate(probes): fig, results = probe_results(ii, T, dvel, probe, labels[ii]) all_results.append(results) plt.tight_layout() fig.savefig('time_poisson_interactive_probe_%s.png' % (suffix % step), bbox_inches='tight') if options.show: plt.draw() for ii, results in enumerate(all_results): output('probe %d (%s):' % (ii, probes[ii].name)) output.level += 2 for key, res in ordered_iteritems(results): output(key + ':') val = res[1] output(' min: %+.2e, mean: %+.2e, max: %+.2e' % (val.min(), val.mean(), val.max())) output.level -= 2
# ------------------------------ # | Create bounrady conditions | # ------------------------------ left_fix_u = EssentialBC('left_fix_u', left, {'u.all': 1.0}) right_fix_u = EssentialBC('right_fix_u', right, {'u.all': 0.0}) # ---------------------------- # | Create initial condition | # ---------------------------- def ic_wrap(x, ic=None): return ghump(x - .3) ic_fun = Function('ic_fun', ic_wrap) ics = InitialCondition('ic', omega, {'u.0': ic_fun}) # ------------------ # | Create problem | # ------------------ pb = Problem(problem_name, equations=eqs, conf=Struct(options={"save_times": save_timestn}, ics={}, ebcs={}, epbcs={}, lcbcs={}, materials={}), active_only=False) pb.setup_output(output_dir=output_folder, output_format=output_format) pb.set_ics(Conditions([ics]))