Пример #1
0
    def test_interpolation_two_meshes(self):
        from sfepy import data_dir
        from sfepy.discrete import Variables
        from sfepy.discrete.fem import Mesh, FEDomain, Field

        m1 = Mesh.from_file(data_dir + '/meshes/3d/block.mesh')

        m2 = Mesh.from_file(data_dir + '/meshes/3d/cube_medium_tetra.mesh')
        m2.coors[:] *= 2.0

        bbox = m1.get_bounding_box()
        dd = bbox[1, :] - bbox[0, :]
        data = nm.sin(4.0 * nm.pi * m1.coors[:,0:1] / dd[0]) \
               * nm.cos(4.0 * nm.pi * m1.coors[:,1:2] / dd[1])

        variables1 = {
            'u': ('unknown field', 'scalar_tp', 0),
            'v': ('test field', 'scalar_tp', 'u'),
        }

        variables2 = {
            'u': ('unknown field', 'scalar_si', 0),
            'v': ('test field', 'scalar_si', 'u'),
        }

        d1 = FEDomain('d1', m1)
        omega1 = d1.create_region('Omega', 'all')
        field1 = Field.from_args('scalar_tp',
                                 nm.float64, (1, 1),
                                 omega1,
                                 approx_order=1)
        ff1 = {field1.name: field1}

        d2 = FEDomain('d2', m2)
        omega2 = d2.create_region('Omega', 'all')
        field2 = Field.from_args('scalar_si',
                                 nm.float64, (1, 1),
                                 omega2,
                                 approx_order=0)
        ff2 = {field2.name: field2}

        vv1 = Variables.from_conf(transform_variables(variables1), ff1)
        u1 = vv1['u']
        u1.set_from_mesh_vertices(data)

        vv2 = Variables.from_conf(transform_variables(variables2), ff2)
        u2 = vv2['u']

        # Performs interpolation, if other field differs from self.field
        # or, in particular, is defined on a different mesh.
        u2.set_from_other(u1, strategy='interpolation', close_limit=0.1)

        fname = in_dir(self.options.out_dir)
        u1.save_as_mesh(fname('test_mesh_interp_block_scalar.vtk'))
        u2.save_as_mesh(fname('test_mesh_interp_cube_scalar.vtk'))

        return True
Пример #2
0
    def __init__(self, equations):
        Container.__init__(self, equations)

        self.variables = Variables(self.collect_variables())
        self.materials = Materials(self.collect_materials())

        self.domain = self.get_domain()

        self.active_bcs = set()

        self.collect_conn_info()
Пример #3
0
def do_interpolation(m2, m1, data, field_name, force=False):
    """Interpolate data from m1 to m2. """
    from sfepy.discrete import Variables
    from sfepy.discrete.fem import FEDomain, Field

    fields = {
        'scalar_si': ((1, 1), 'Omega', 2),
        'vector_si': ((3, 1), 'Omega', 2),
        'scalar_tp': ((1, 1), 'Omega', 1),
        'vector_tp': ((3, 1), 'Omega', 1),
    }

    d1 = FEDomain('d1', m1)

    omega1 = d1.create_region('Omega', 'all')

    f = fields[field_name]

    field1 = Field.from_args('f',
                             nm.float64,
                             f[0],
                             d1.regions[f[1]],
                             approx_order=f[2])
    ff = {field1.name: field1}

    vv = Variables.from_conf(transform_variables(variables), ff)
    u1 = vv['u']
    u1.set_from_mesh_vertices(data)

    d2 = FEDomain('d2', m2)
    omega2 = d2.create_region('Omega', 'all')

    field2 = Field.from_args('f',
                             nm.float64,
                             f[0],
                             d2.regions[f[1]],
                             approx_order=f[2])
    ff2 = {field2.name: field2}

    vv2 = Variables.from_conf(transform_variables(variables), ff2)
    u2 = vv2['u']

    if not force:
        # Performs interpolation, if other field differs from self.field
        # or, in particular, is defined on a different mesh.
        u2.set_from_other(u1, strategy='interpolation', close_limit=0.5)

    else:
        coors = u2.field.get_coor()
        vals = u1.evaluate_at(coors, close_limit=0.5)
        u2.set_data(vals)

    return u1, u2
Пример #4
0
    def test_interpolation_two_meshes(self):
        from sfepy import data_dir
        from sfepy.discrete import Variables
        from sfepy.discrete.fem import Mesh, FEDomain, Field

        m1 = Mesh.from_file(data_dir + '/meshes/3d/block.mesh')

        m2 = Mesh.from_file(data_dir + '/meshes/3d/cube_medium_tetra.mesh')
        m2.coors[:] *= 2.0

        bbox = m1.get_bounding_box()
        dd = bbox[1,:] - bbox[0,:]
        data = nm.sin(4.0 * nm.pi * m1.coors[:,0:1] / dd[0]) \
               * nm.cos(4.0 * nm.pi * m1.coors[:,1:2] / dd[1])

        variables1 = {
            'u'       : ('unknown field', 'scalar_tp', 0),
            'v'       : ('test field',    'scalar_tp', 'u'),
        }

        variables2 = {
            'u'       : ('unknown field', 'scalar_si', 0),
            'v'       : ('test field',    'scalar_si', 'u'),
        }

        d1 = FEDomain('d1', m1)
        omega1 = d1.create_region('Omega', 'all')
        field1 = Field.from_args('scalar_tp', nm.float64, (1,1), omega1,
                                 approx_order=1)
        ff1 = {field1.name : field1}

        d2 = FEDomain('d2', m2)
        omega2 = d2.create_region('Omega', 'all')
        field2 = Field.from_args('scalar_si', nm.float64, (1,1), omega2,
                                 approx_order=0)
        ff2 = {field2.name : field2}

        vv1 = Variables.from_conf(transform_variables(variables1), ff1)
        u1 = vv1['u']
        u1.set_from_mesh_vertices(data)

        vv2 = Variables.from_conf(transform_variables(variables2), ff2)
        u2 = vv2['u']

        # Performs interpolation, if other field differs from self.field
        # or, in particular, is defined on a different mesh.
        u2.set_from_other(u1, strategy='interpolation', close_limit=0.1)

        fname = in_dir(self.options.out_dir)
        u1.save_as_mesh(fname('test_mesh_interp_block_scalar.vtk'))
        u2.save_as_mesh(fname('test_mesh_interp_cube_scalar.vtk'))

        return True
Пример #5
0
    def standalone_setup(self):
        from sfepy.discrete import create_adof_conns, Variables

        conn_info = {'aux': self.get_conn_info()}
        adcs = create_adof_conns(conn_info, None)

        variables = Variables(self.get_variables())
        variables.set_adof_conns(adcs)

        materials = self.get_materials(join=True)

        for mat in materials:
            mat.time_update(None, [Struct(terms=[self])])
Пример #6
0
    def standalone_setup(self):
        from sfepy.discrete import create_adof_conns, Variables

        conn_info = {'aux' : self.get_conn_info()}
        adcs = create_adof_conns(conn_info, None)

        variables = Variables(self.get_variables())
        variables.set_adof_conns(adcs)

        materials = self.get_materials(join=True)

        for mat in materials:
            mat.time_update(None, [Struct(terms=[self])])
Пример #7
0
    def from_conf(conf, options):
        from sfepy.discrete import FieldVariable, Variables, Problem
        from sfepy.discrete.fem import Mesh, FEDomain, Field

        mesh = Mesh.from_file(data_dir + '/meshes/2d/square_unit_tri.mesh')
        domain = FEDomain('domain', mesh)

        omega = domain.create_region('Omega', 'all')
        domain.create_region('Left', 'vertices in (x < -0.499)', 'facet')
        domain.create_region(
            'LeftStrip', 'vertices in (x < -0.499)'
            ' & (y > -0.199) & (y < 0.199)', 'facet')
        domain.create_region('LeftFix', 'r.Left -v r.LeftStrip', 'facet')
        domain.create_region('Right', 'vertices in (x > 0.499)', 'facet')
        domain.create_region(
            'RightStrip', 'vertices in (x > 0.499)'
            ' & (y > -0.199) & (y < 0.199)', 'facet')
        domain.create_region('RightFix', 'r.Right -v r.RightStrip', 'facet')

        fu = Field.from_args('fu', nm.float64, 'vector', omega, approx_order=2)
        u = FieldVariable('u', 'unknown', fu)

        fp = Field.from_args('fp', nm.float64, 'scalar', omega, approx_order=2)
        p = FieldVariable('p', 'unknown', fp)

        pb = Problem('test', domain=domain, fields=[fu, fp], auto_conf=False)

        test = Test(problem=pb,
                    variables=Variables([u, p]),
                    conf=conf,
                    options=options)
        return test
Пример #8
0
def do_interpolation(m2, m1, data, field_name, force=False):
    """Interpolate data from m1 to m2. """
    from sfepy.discrete import Variables
    from sfepy.discrete.fem import FEDomain, Field

    fields = {
        'scalar_si' : ((1,1), 'Omega', 2),
        'vector_si' : ((3,1), 'Omega', 2),
        'scalar_tp' : ((1,1), 'Omega', 1),
        'vector_tp' : ((3,1), 'Omega', 1),
    }

    d1 = FEDomain('d1', m1)

    omega1 = d1.create_region('Omega', 'all')

    f = fields[field_name]

    field1 = Field.from_args('f', nm.float64, f[0], d1.regions[f[1]],
                             approx_order=f[2])
    ff = {field1.name : field1}

    vv = Variables.from_conf(transform_variables(variables), ff)
    u1 = vv['u']
    u1.set_from_mesh_vertices(data)

    d2 = FEDomain('d2', m2)
    omega2 = d2.create_region('Omega', 'all')

    field2 = Field.from_args('f', nm.float64, f[0], d2.regions[f[1]],
                             approx_order=f[2])
    ff2 = {field2.name : field2}

    vv2 = Variables.from_conf(transform_variables(variables), ff2)
    u2 = vv2['u']

    if not force:
        # Performs interpolation, if other field differs from self.field
        # or, in particular, is defined on a different mesh.
        u2.set_from_other(u1, strategy='interpolation', close_limit=0.5)

    else:
        coors = u2.field.get_coor()
        vals = u1.evaluate_at(coors, close_limit=0.5)
        u2.set_data(vals)

    return u1, u2
Пример #9
0
    def __init__(self, equations):
        Container.__init__(self, equations)

        self.variables = Variables(self.collect_variables())
        self.materials = Materials(self.collect_materials())

        self.domain = self.get_domain()

        self.active_bcs = set()

        self.collect_conn_info()
    def test_evaluate_at(self):
        from sfepy import data_dir
        from sfepy.discrete.fem import Mesh
        from sfepy.discrete import Variables
        from sfepy.discrete.fem import FEDomain, Field

        meshes = {
            'tp': Mesh.from_file(data_dir + '/meshes/3d/block.mesh'),
        }
        datas = gen_datas(meshes)

        fields = {
            'scalar_tp': ((1, 1), 'Omega', 1),
            'vector_tp': ((3, 1), 'Omega', 1),
        }

        ok = True
        for field_name in ['scalar_tp', 'vector_tp']:
            d = FEDomain('d', meshes['tp'])
            d.create_region('Omega', 'all')

            f = fields[field_name]
            field = Field.from_args('f',
                                    nm.complex128,
                                    f[0],
                                    d.regions[f[1]],
                                    approx_order=f[2])
            ff = {field.name: field}

            vv = Variables.from_conf(transform_variables(variables), ff)
            u = vv['u']

            bbox = d.get_mesh_bounding_box()
            t = nm.expand_dims(nm.linspace(0, 1, 100), 1)
            coors = nm.expand_dims(bbox[1] - bbox[0], 0) * t + bbox[0]

            data_r = datas[field_name]
            data_i = 2. / (1 + datas[field_name])

            u.set_from_mesh_vertices(data_r)
            vals_r = u.evaluate_at(coors)
            u.set_from_mesh_vertices(data_i)
            vals_i = u.evaluate_at(coors)
            u.set_from_mesh_vertices(data_r + data_i * 1j)
            vals = u.evaluate_at(coors)

            _ok = nm.allclose(vals_r + vals_i * 1j, vals, rtol=0.0, atol=1e-12)
            _ok = _ok and nm.abs(vals).sum() > 1
            self.report('evaluating complex field %s: %s' % (field_name, _ok))

            ok = ok and _ok

        return ok
Пример #11
0
    def test_evaluate_at(self):
        from sfepy import data_dir
        from sfepy.discrete.fem import Mesh
        from sfepy.discrete import Variables
        from sfepy.discrete.fem import FEDomain, Field

        meshes = {
            'tp' : Mesh.from_file(data_dir + '/meshes/3d/block.mesh'),
        }
        datas = gen_datas(meshes)

        fields = {
            'scalar_tp' : ((1,1), 'Omega', 1),
            'vector_tp' : ((3,1), 'Omega', 1),
        }

        ok = True
        for field_name in ['scalar_tp', 'vector_tp']:
            d = FEDomain('d', meshes['tp'])
            d.create_region('Omega', 'all')

            f = fields[field_name]
            field = Field.from_args('f', nm.complex128, f[0],
                                    d.regions[f[1]],
                                    approx_order=f[2])
            ff = {field.name : field}

            vv = Variables.from_conf(transform_variables(variables), ff)
            u = vv['u']

            bbox = d.get_mesh_bounding_box()
            t = nm.expand_dims(nm.linspace(0, 1, 100), 1)
            coors = nm.expand_dims(bbox[1] - bbox[0], 0) * t + bbox[0]

            data_r = datas[field_name]
            data_i = 2. / (1 + datas[field_name])

            u.set_from_mesh_vertices(data_r)
            vals_r = u.evaluate_at(coors)
            u.set_from_mesh_vertices(data_i)
            vals_i = u.evaluate_at(coors)
            u.set_from_mesh_vertices(data_r + data_i * 1j)
            vals = u.evaluate_at(coors)

            _ok = nm.allclose(vals_r + vals_i * 1j, vals, rtol=0.0, atol=1e-12)
            _ok = _ok and nm.abs(vals).sum() > 1
            self.report('evaluating complex field %s: %s' % (field_name, _ok))

            ok = ok and _ok

        return ok
Пример #12
0
    def test_pbc( self ):
        from sfepy.discrete import Variables, Conditions

        problem  = self.problem
        conf = self.conf

        ebcs = Conditions.from_conf(conf.ebcs, problem.domain.regions)
        epbcs = Conditions.from_conf(conf.epbcs, problem.domain.regions)

        variables = Variables.from_conf(conf.variables, problem.fields)
        variables.equation_mapping(ebcs, epbcs, None, problem.functions)
        state = variables.create_state_vector()
        variables.apply_ebc(state)
        return variables.has_ebc(state)
Пример #13
0
    def test_pbc(self):
        from sfepy.discrete import Variables, Conditions

        problem = self.problem
        conf = self.conf

        ebcs = Conditions.from_conf(conf.ebcs, problem.domain.regions)
        epbcs = Conditions.from_conf(conf.epbcs, problem.domain.regions)

        variables = Variables.from_conf(conf.variables, problem.fields)
        variables.equation_mapping(ebcs, epbcs, None, problem.functions)
        state = variables.create_state_vector()
        variables.apply_ebc(state)
        return variables.has_ebc(state)
Пример #14
0
    def test_consistency_d_dw(self):
        from sfepy.discrete import Variables

        ok = True
        pb = self.problem
        for aux in test_terms:
            term_template, (prefix, par_name, d_vars, dw_vars) = aux
            print term_template, prefix, par_name, d_vars, dw_vars

            term1 = term_template % ((prefix, ) + d_vars)

            variables = Variables.from_conf(self.conf.variables, pb.fields)

            for var_name in d_vars:
                var = variables[var_name]
                n_dof = var.field.n_nod * var.field.shape[0]
                aux = nm.arange(n_dof, dtype=nm.float64)
                var.set_data(aux)

            if prefix == 'd':
                val1 = pb.evaluate(term1, var_dict=variables.as_dict())

            else:
                val1 = pb.evaluate(term1,
                                   call_mode='d_eval',
                                   var_dict=variables.as_dict())

            self.report('%s: %s' % (term1, val1))

            term2 = term_template % (('dw', ) + dw_vars[:2])

            vec, vv = pb.evaluate(term2,
                                  mode='weak',
                                  var_dict=variables.as_dict(),
                                  ret_variables=True)

            pvec = vv.get_state_part_view(vec, dw_vars[2])
            val2 = nm.dot(variables[par_name](), pvec)
            self.report('%s: %s' % (term2, val2))

            err = nm.abs(val1 - val2) / nm.abs(val1)
            _ok = err < 1e-12
            self.report('relative difference: %e -> %s' % (err, _ok))

            ok = ok and _ok

        return ok
Пример #15
0
    def test_invariance_qp(self):
        from sfepy import data_dir
        from sfepy.discrete import Variables, Integral
        from sfepy.discrete.fem import Mesh, FEDomain, Field
        from sfepy.terms import Term
        from sfepy.discrete.common.mappings import get_physical_qps

        mesh = Mesh.from_file(data_dir + '/meshes/3d/block.mesh')

        bbox = mesh.get_bounding_box()
        dd = bbox[1,:] - bbox[0,:]
        data = nm.sin(4.0 * nm.pi * mesh.coors[:,0:1] / dd[0]) \
               * nm.cos(4.0 * nm.pi * mesh.coors[:,1:2] / dd[1])

        variables = {
            'u'       : ('unknown field', 'scalar_tp', 0),
            'v'       : ('test field',    'scalar_tp', 'u'),
        }

        domain = FEDomain('domain', mesh)
        omega = domain.create_region('Omega', 'all')
        field = Field.from_args('scalar_tp', nm.float64, 1, omega,
                                approx_order=1)
        ff = {field.name : field}

        vv = Variables.from_conf(transform_variables(variables), ff)
        u = vv['u']
        u.set_from_mesh_vertices(data)

        integral = Integral('i', order=2)
        term = Term.new('ev_volume_integrate(u)', integral, omega, u=u)
        term.setup()
        val1 = term.evaluate(mode='qp')
        val1 = val1.ravel()

        qps = get_physical_qps(omega, integral)
        coors = qps.values

        val2 = u.evaluate_at(coors).ravel()

        self.report('max. difference:', nm.abs(val1 - val2).max())
        ok = nm.allclose(val1, val2, rtol=0.0, atol=1e-12)
        self.report('invariance in qp: %s' % ok)

        return ok
Пример #16
0
    def test_consistency_d_dw(self):
        from sfepy.discrete import Variables

        ok = True
        pb = self.problem
        for aux in test_terms:
            term_template, (prefix, par_name, d_vars, dw_vars) = aux
            print term_template, prefix, par_name, d_vars, dw_vars

            term1 = term_template % ((prefix,) + d_vars)

            variables = Variables.from_conf(self.conf.variables, pb.fields)

            for var_name in d_vars:
                var = variables[var_name]
                n_dof = var.field.n_nod * var.field.shape[0]
                aux = nm.arange(n_dof, dtype=nm.float64)
                var.set_data(aux)

            if prefix == 'd':
                val1 = pb.evaluate(term1, var_dict=variables.as_dict())

            else:
                val1 = pb.evaluate(term1, call_mode='d_eval',
                                   var_dict=variables.as_dict())

            self.report('%s: %s' % (term1, val1))

            term2 = term_template % (('dw',) + dw_vars[:2])

            vec, vv = pb.evaluate(term2, mode='weak',
                                  var_dict=variables.as_dict(),
                                  ret_variables=True)

            pvec = vv.get_state_part_view(vec, dw_vars[2])
            val2 = nm.dot(variables[par_name](), pvec)
            self.report('%s: %s' % (term2, val2))

            err = nm.abs(val1 - val2) / nm.abs(val1)
            _ok = err < 1e-12
            self.report('relative difference: %e -> %s' % (err, _ok))

            ok = ok and _ok

        return ok
Пример #17
0
    def __init__(self, dim, approx_order, **kwargs):
        """
        Creates Struct object with all the data necessary to test terms

        :param dim: dimension
        :param approx_order: approximation order
        :param kwargs: velo, diffusion or penalty for prepare_materials
        :return: term test scope
        """

        if dim == 1:
            (field, regions), mesh = prepare_dgfield_1D(approx_order)
        elif dim == 2:
            (field, regions), mesh = prepare_field_2D(approx_order)

        self.field = field
        self.regions = regions
        self.mesh = mesh

        self.n_cell = field.n_cell
        self.n_nod = field.n_nod
        self.n_el_nod = field.n_el_nod

        self.u, self.v = self.prepare_variables(field)
        self.u.data = [(nm.zeros(self.n_nod))]
        self.variables = Variables([ self.u, self.v])

        self.integral = Integral('i', order=approx_order * 2)
        self.a, self.D, self.Cw = self.prepare_materials(field, **kwargs)

        if dim == 1:
            velo = nm.array(1.0)
        elif dim == 2:
            velo = nm.array([1.0, 0])

        self.burg_velo = velo.T / nm.linalg.norm(velo)

        self.nonlin = Material('nonlin',
                               values={'.fun': self.burg_fun,
                                       '.dfun': self.burg_fun_d})

        self.out = nm.zeros((self.n_cell, 1, self.n_el_nod, 1))
Пример #18
0
    def test_sensitivity(self):
        from sfepy.discrete import Variables
        from sfepy.mesh.splinebox import SplineBox

        tolerance = 1e-4
        ok = True
        pb = self.problem

        variables = Variables.from_conf(self.conf.variables, pb.fields)

        for var_name in variables.names:
            var = variables[var_name]
            n_dof = var.field.n_nod * var.field.shape[0]
            aux = nm.arange(n_dof, dtype=nm.float64)
            var.set_data(aux)

        mesh = pb.domain.mesh
        bbox = nm.array(mesh.get_bounding_box()).T
        spbox = SplineBox(bbox, mesh.coors)

        dvel_modes = [
            # expand inner cylinder, no volume change
            [([20, 21, 22, 23], (-1, -1, 0)),
             ([24, 25, 26, 27], (-1, 1, 0)),
             ([36, 37, 38, 39], (1, -1, 0)),
             ([40, 41, 42, 43], (1, 1, 0))],
            # volume change
            [(range(16, 32), (0.2, 0, 0)),
             (range(32, 48), (0.4, 0, 0)),
             (range(48, 52), (0.6, 0.2, 0.2)),
             (range(52, 56), (0.8, 0.2, 0.3)),
             (range(56, 60), (1.0, 0.2, 0.4)),
             (range(60, 64), (1.2, 0.2, 0.5))],
        ]

        r4 = range(4)
        cp_pos = {i*16 + j*4 + k: (i, j, k)
            for k in r4 for j in r4 for i in r4}

        # compute design velocities
        dvels = []
        for dv_mode in dvel_modes:
            dvel = 0
            for pts, dir in dv_mode:
                for pt in pts:
                    dvel += spbox.evaluate_derivative(cp_pos[pt], dir)
            dvels.append(dvel)

        for tname_sa, tname, rname, mat, var1, var2 in test_terms:
            args = [] if mat is None else [mat]
            args += [var1] if var2 is None else [var1, var2]
            term = '%s.i.%s(%s)' % (tname, rname, ', '.join(args))
            term_sa = '%s.i.%s(%s)' % (tname_sa, rname, ', '.join(args + ['V']))

            val = pb.evaluate(term, var_dict=variables.as_dict())
            self.report('%s: %s' % (tname, val))

            dt = 1e-6
            for ii, dvel in enumerate(dvels):
                val = pb.evaluate(term, var_dict=variables.as_dict())
                variables['V'].set_data(dvel)
                val_sa = pb.evaluate(term_sa, var_dict=variables.as_dict())
                self.report('%s - mesh_velocity mode %d' % (tname_sa, ii))
                # mesh perturbation +
                new_coors = modify_mesh(dt/2., spbox, dvel_modes[ii], cp_pos)
                pb.set_mesh_coors(new_coors, update_fields=True)
                val1 = pb.evaluate(term, var_dict=variables.as_dict())

                # mesh perturbation -
                new_coors = modify_mesh(-dt/2., spbox, dvel_modes[ii], cp_pos)
                pb.set_mesh_coors(new_coors, update_fields=True)
                val2 = pb.evaluate(term, var_dict=variables.as_dict())

                val_fd = (val1 - val2) / dt
                err = nm.abs(val_sa - val_fd) / nm.linalg.norm(val_sa)
                self.report('term:               %s' % val)
                self.report('sensitivity term:   %s' % val_sa)
                self.report('finite differences: %s' % val_fd)
                self.report('relative error:     %s' % err)

                _ok = err < tolerance

                ok = ok and _ok

        return ok
Пример #19
0
def save_basis_on_mesh(mesh, options, output_dir, lin,
                       permutations=None, suffix=''):
    if permutations is not None:
        mesh = mesh.copy()
        gel = GeometryElement(mesh.descs[0])
        perms = gel.get_conn_permutations()[permutations]
        conn = mesh.cmesh.get_cell_conn()
        n_el, n_ep = conn.num, gel.n_vertex
        offsets = nm.arange(n_el) * n_ep

        conn.indices[:] = conn.indices.take((perms + offsets[:, None]).ravel())

    domain = FEDomain('domain', mesh)

    omega = domain.create_region('Omega', 'all')
    field = Field.from_args('f', nm.float64, shape=1, region=omega,
                            approx_order=options.max_order,
                            poly_space_base=options.basis)
    var = FieldVariable('u', 'unknown', field)

    if options.plot_dofs:
        import sfepy.postprocess.plot_dofs as pd
        import sfepy.postprocess.plot_cmesh as pc
        ax = pc.plot_wireframe(None, mesh.cmesh)
        ax = pd.plot_global_dofs(ax, field.get_coor(), field.econn)
        ax = pd.plot_local_dofs(ax, field.get_coor(), field.econn)
        if options.dofs is not None:
            ax = pd.plot_nodes(ax, field.get_coor(), field.econn,
                               field.poly_space.nodes,
                               get_dofs(options.dofs, var.n_dof))
        pd.plt.show()

    output('dofs: %d' % var.n_dof)

    vec = nm.empty(var.n_dof, dtype=var.dtype)
    n_digit, _format = get_print_info(var.n_dof, fill='0')
    name_template = os.path.join(output_dir,
                                 'dof_%s%s.vtk' % (_format, suffix))
    for ip in get_dofs(options.dofs, var.n_dof):
        output('dof %d...' % ip)

        vec.fill(0.0)
        vec[ip] = 1.0

        var.set_data(vec)

        if options.derivative == 0:
            out = var.create_output(vec, linearization=lin)

        else:
            out = create_expression_output('ev_grad.ie.Elements(u)',
                                           'u', 'f', {'f' : field}, None,
                                           Variables([var]),
                                           mode='qp', verbose=False,
                                           min_level=lin.min_level,
                                           max_level=lin.max_level,
                                           eps=lin.eps)

        name = name_template % ip
        ensure_path(name)
        out['u'].mesh.write(name, out=out)

        output('...done (%s)' % name)
Пример #20
0
def create_evaluable(expression, fields, materials, variables, integrals,
                     regions=None,
                     ebcs=None, epbcs=None, lcbcs=None, ts=None, functions=None,
                     auto_init=False, mode='eval', extra_args=None,
                     verbose=True, kwargs=None):
    """
    Create evaluable object (equations and corresponding variables)
    from the `expression` string.

    Parameters
    ----------
    expression : str
        The expression to evaluate.
    fields : dict
        The dictionary of fields used in `variables`.
    materials : Materials instance
        The materials used in the expression.
    variables : Variables instance
        The variables used in the expression.
    integrals : Integrals instance
        The integrals to be used.
    regions : Region instance or list of Region instances
        The region(s) to be used. If not given, the regions defined
        within the fields domain are used.
    ebcs : Conditions instance, optional
        The essential (Dirichlet) boundary conditions for 'weak'
        mode.
    epbcs : Conditions instance, optional
        The periodic boundary conditions for 'weak'
        mode.
    lcbcs : Conditions instance, optional
        The linear combination boundary conditions for 'weak'
        mode.
    ts : TimeStepper instance, optional
        The time stepper.
    functions : Functions instance, optional
        The user functions for boundary conditions, materials
        etc.
    auto_init : bool
        Set values of all variables to all zeros.
    mode : one of 'eval', 'el_avg', 'qp', 'weak'
        The evaluation mode - 'weak' means the finite element
        assembling, 'qp' requests the values in quadrature points,
        'el_avg' element averages and 'eval' means integration over
        each term region.
    extra_args : dict, optional
        Extra arguments to be passed to terms in the expression.
    verbose : bool
        If False, reduce verbosity.
    kwargs : dict, optional
        The variables (dictionary of (variable name) : (Variable
        instance)) to be used in the expression.

    Returns
    -------
    equation : Equation instance
        The equation that is ready to be evaluated.
    variables : Variables instance
        The variables used in the equation.
    """
    if kwargs is None:
        kwargs = {}

    if regions is not None:
        if isinstance(regions, Region):
            regions = [regions]

        regions = OneTypeList(Region, regions)

    else:
        regions = fields[fields.keys()[0]].domain.regions

    # Create temporary variables.
    aux_vars = Variables(variables)

    if extra_args is None:
        extra_args = kwargs

    else:
        extra_args = copy(extra_args)
        extra_args.update(kwargs)

    if ts is not None:
        extra_args.update({'ts' : ts})

    equations = Equations.from_conf({'tmp' : expression},
                                    aux_vars, regions, materials, integrals,
                                    user=extra_args, verbose=verbose)
    equations.collect_conn_info()

    # The true variables used in the expression.
    variables = equations.variables
    if auto_init:
        for var in variables:
            var.init_data(step=0)

    if mode == 'weak':
        equations.time_update(ts, ebcs, epbcs, lcbcs, functions,
                              verbose=verbose)

    else:
        setup_extra_data(equations.conn_info)

    return equations, variables
Пример #21
0
class Equations(Container):
    @staticmethod
    def from_conf(conf,
                  variables,
                  regions,
                  materials,
                  integrals,
                  user=None,
                  verbose=True):

        objs = OneTypeList(Equation)

        conf = copy(conf)

        ii = 0
        for name, desc in conf.iteritems():
            if verbose:
                output('equation "%s":' % name)
                output(desc)
            eq = Equation.from_desc(name,
                                    desc,
                                    variables,
                                    regions,
                                    materials,
                                    integrals,
                                    user=user)
            objs.append(eq)
            ii += 1

        obj = Equations(objs)

        return obj

    def __init__(self, equations):
        Container.__init__(self, equations)

        self.variables = Variables(self.collect_variables())
        self.materials = Materials(self.collect_materials())

        self.domain = self.get_domain()

        self.active_bcs = set()

        self.collect_conn_info()

    def create_subequations(self, var_names, known_var_names=None):
        """
        Create sub-equations containing only terms with the given virtual
        variables.

        Parameters
        ----------
        var_names : list
            The list of names of virtual variables.
        known_var_names : list
            The list of  names of (already) known state variables.

        Returns
        -------
        subequations : Equations instance
            The sub-equations.
        """
        from sfepy.discrete import FieldVariable

        known_var_names = get_default(known_var_names, [])

        objs = []
        for iv, var_name in enumerate(var_names):
            terms = [
                term.copy(name=term.name) for eq in self for term in eq.terms
                if term.get_virtual_name() == var_name
            ]

            # Make parameter variables from known state variables in terms
            # arguments.
            for known_name in known_var_names:
                for term in terms:
                    if known_name in term.arg_names:
                        ii = term.arg_names.index(known_name)
                        state = self.variables[known_name]
                        par = FieldVariable(known_name,
                                            'parameter',
                                            state.field,
                                            primary_var_name='(set-to-None)')
                        term.args[ii] = par
                        term._kwargs[known_name] = par
                        par.set_data(state())

            new_terms = Terms(terms)
            objs.append(Equation('eq_%d' % iv, new_terms))

        subequations = Equations(objs)

        return subequations

    def get_domain(self):
        domain = None

        for eq in self:
            for term in eq.terms:
                if term.has_region:
                    domain = term.region.domain

        return domain

    def collect_materials(self):
        """
        Collect materials present in the terms of all equations.
        """
        materials = []
        for eq in self:
            materials.extend(eq.collect_materials())

        # Make the list items unique.
        materials = list(set(materials))

        return materials

    def reset_materials(self):
        """
        Clear material data so that next materials.time_update() is
        performed even for stationary materials.
        """
        self.materials.reset()

    def collect_variables(self):
        """
        Collect variables present in the terms of all equations.
        """
        variables = []
        for eq in self:
            variables.extend(eq.collect_variables())

        # Make the list items unique.
        variables = list(set(variables))

        return variables

    def get_variable(self, name):
        var = self.variables.get(name,
                                 msg_if_none='unknown variable! (%s)' % name)
        return var

    def collect_conn_info(self):
        """
        Collect connectivity information as defined by the equations.
        """
        self.conn_info = {}

        for eq in self:
            eq.collect_conn_info(self.conn_info)

        return self.conn_info

    def get_variable_names(self):
        """
        Return the list of names of all variables used in equations.
        """
        vns = set()
        for eq in self:
            for term in eq.terms:
                vns.update(term.get_variable_names())
        return list(vns)

    def get_variable_dependencies(self):
        """
        For each virtual variable get names of state/parameter variables that
        are present in terms with that virtual variable.

        The virtual variables define the actual equations and their
        dependencies define the variables needed to evaluate the equations.

        Returns
        -------
        deps : dict
            The dependencies as a dictionary with virtual variable names as
            keys and sets of state/parameter variables as values.
        """
        deps = {}
        for eq in self:
            for term in eq.terms:
                dep_list = deps.setdefault(term.get_virtual_name(), set())
                dep_list.update(term.get_state_names())

        return deps

    def invalidate_term_caches(self):
        """
        Invalidate evaluate caches of variables present in equations.
        """
        for var in self.variables:
            var.invalidate_evaluate_cache()

    def print_terms(self):
        """
        Print names of equations and their terms.
        """
        output('equations:')
        for eq in self:
            output('  %s:' % eq.name)
            for term in eq.terms:
                output('    %+.2e * %s.%d.%s(%s)' %
                       (term.sign, term.name, term.integral.order,
                        term.region.name, term.arg_str))

    def time_update(self,
                    ts,
                    ebcs=None,
                    epbcs=None,
                    lcbcs=None,
                    functions=None,
                    problem=None,
                    active_only=True,
                    verbose=True):
        """
        Update the equations for current time step.

        The update involves creating the mapping of active DOFs from/to
        all DOFs for all state variables, the setup of linear
        combination boundary conditions operators and the setup of
        active DOF connectivities.

        Parameters
        ----------
        ts : TimeStepper instance
            The time stepper.
        ebcs : Conditions instance, optional
            The essential (Dirichlet) boundary conditions.
        epbcs : Conditions instance, optional
            The periodic boundary conditions.
        lcbcs : Conditions instance, optional
            The linear combination boundary conditions.
        functions : Functions instance, optional
            The user functions for boundary conditions, materials, etc.
        problem : Problem instance, optional
            The problem that can be passed to user functions as a context.
        active_only : bool
            If True, the active DOF connectivities and matrix graph have
            reduced size and are created with the reduced (active DOFs only)
            numbering.
        verbose : bool
            If False, reduce verbosity.

        Returns
        -------
        graph_changed : bool
            The flag set to True if the current time step set of active
            boundary conditions differs from the set of the previous
            time step.
        """
        self.variables.time_update(ts, functions, verbose=verbose)

        active_bcs = self.variables.equation_mapping(ebcs,
                                                     epbcs,
                                                     ts,
                                                     functions,
                                                     problem=problem,
                                                     active_only=active_only)
        graph_changed = active_only and (active_bcs != self.active_bcs)
        self.active_bcs = active_bcs

        if graph_changed or not self.variables.adof_conns:
            adcs = create_adof_conns(self.conn_info,
                                     self.variables.adi.indx,
                                     active_only=active_only)
            self.variables.set_adof_conns(adcs)

        self.variables.setup_lcbc_operators(lcbcs, ts, functions)

        for eq in self:
            for term in eq.terms:
                term.time_update(ts)

        return graph_changed

    def time_update_materials(self,
                              ts,
                              mode='normal',
                              problem=None,
                              verbose=True):
        """
        Update data materials for current time and possibly also state.

        Parameters
        ----------
        ts : TimeStepper instance
            The time stepper.
        mode : 'normal', 'update' or 'force'
            The update mode, see
            :func:`sfepy.discrete.materials.Material.time_update()`.
        problem : Problem instance, optional
            The problem that can be passed to user functions as a context.
        verbose : bool
            If False, reduce verbosity.
        """
        self.materials.time_update(ts,
                                   self,
                                   mode=mode,
                                   problem=problem,
                                   verbose=verbose)

    def setup_initial_conditions(self, ics, functions=None):
        self.variables.setup_initial_conditions(ics, functions)

    def get_graph_conns(self,
                        any_dof_conn=False,
                        rdcs=None,
                        cdcs=None,
                        active_only=True):
        """
        Get DOF connectivities needed for creating tangent matrix graph.

        Parameters
        ----------
        any_dof_conn : bool
            By default, only volume DOF connectivities are used, with
            the exception of trace surface DOF connectivities. If True,
            any kind of DOF connectivities is allowed.
        rdcs, cdcs : arrays, optional
            Additional row and column DOF connectivities, corresponding
            to the variables used in the equations.
        active_only : bool
            If True, the active DOF connectivities have reduced size and are
            created with the reduced (active DOFs only) numbering.

        Returns
        -------
        rdcs, cdcs : arrays
            The row and column DOF connectivities defining the matrix
            graph blocks.
        """
        if rdcs is None:
            rdcs = []
            cdcs = []

        elif cdcs is None:
            cdcs = copy(rdcs)

        else:
            assert_(len(rdcs) == len(cdcs))
            if rdcs is cdcs:  # Make sure the lists are not the same object.
                rdcs = copy(rdcs)

        adcs = self.variables.adof_conns

        # Only volume dof connectivities are used, with the exception of trace
        # surface dof connectivities.
        shared = set()
        for key, ii, info in iter_dict_of_lists(self.conn_info,
                                                return_keys=True):
            rvar, cvar = info.virtual, info.state
            if (rvar is None) or (cvar is None):
                continue

            is_surface = rvar.is_surface or cvar.is_surface

            dct = info.dc_type.type
            if not (dct in ('volume', 'scalar', 'plate') or is_surface
                    or info.is_trace or any_dof_conn):
                continue

            rreg_name = info.get_region_name(can_trace=False)
            creg_name = info.get_region_name()

            rname = rvar.get_primary_name()
            rkey = (rname, rreg_name, dct, False)
            ckey = (cvar.name, creg_name, dct, info.is_trace)

            dc_key = (rkey, ckey)

            if not dc_key in shared:
                rdc = adcs[rkey]
                cdc = adcs[ckey]
                if not active_only:
                    ii = nm.where(rdc < 0)
                    rdc = rdc.copy()
                    rdc[ii] = -1 - rdc[ii]

                    ii = nm.where(cdc < 0)
                    cdc = cdc.copy()
                    cdc[ii] = -1 - cdc[ii]

                rdcs.append(rdc)
                cdcs.append(cdc)

                shared.add(dc_key)

        return rdcs, cdcs

    def create_matrix_graph(self,
                            any_dof_conn=False,
                            rdcs=None,
                            cdcs=None,
                            shape=None,
                            active_only=True,
                            verbose=True):
        """
        Create tangent matrix graph, i.e. preallocate and initialize the
        sparse storage needed for the tangent matrix. Order of DOF
        connectivities is not important.

        Parameters
        ----------
        any_dof_conn : bool
            By default, only volume DOF connectivities are used, with
            the exception of trace surface DOF connectivities. If True,
            any kind of DOF connectivities is allowed.
        rdcs, cdcs : arrays, optional
            Additional row and column DOF connectivities, corresponding
            to the variables used in the equations.
        shape : tuple, optional
            The required shape, if it is different from the shape
            determined by the equations variables. This may be needed if
            additional row and column DOF connectivities are passed in.
        active_only : bool
            If True, the matrix graph has reduced size and is created with the
            reduced (active DOFs only) numbering.
        verbose : bool
            If False, reduce verbosity.

        Returns
        -------
        matrix : csr_matrix
            The matrix graph in the form of a CSR matrix with
            preallocated structure and zero data.
        """
        if not self.variables.has_virtuals():
            output('no matrix (no test variables)!')
            return None

        shape = get_default(shape, self.variables.get_matrix_shape())

        output('matrix shape:', shape, verbose=verbose)
        if nm.prod(shape) == 0:
            output('no matrix (zero size)!')
            return None

        rdcs, cdcs = self.get_graph_conns(any_dof_conn=any_dof_conn,
                                          rdcs=rdcs,
                                          cdcs=cdcs,
                                          active_only=active_only)

        if not len(rdcs):
            output('no matrix (empty dof connectivities)!')
            return None

        output('assembling matrix graph...', verbose=verbose)
        tt = time.clock()

        nnz, prow, icol = create_mesh_graph(shape[0], shape[1], len(rdcs),
                                            rdcs, cdcs)

        output('...done in %.2f s' % (time.clock() - tt), verbose=verbose)
        output('matrix structural nonzeros: %d (%.2e%% fill)' \
               % (nnz, float(nnz) / nm.prod(shape)), verbose=verbose)

        data = nm.zeros((nnz, ), dtype=self.variables.dtype)
        matrix = sp.csr_matrix((data, icol, prow), shape)

        return matrix

    def init_time(self, ts):
        pass

    def advance(self, ts):
        for eq in self:
            for term in eq.terms:
                term.advance(ts)

        self.variables.advance(ts)

    ##
    # Interface to self.variables.
    def create_state_vector(self):
        return self.variables.create_state_vector()

    def create_stripped_state_vector(self):
        return self.variables.create_stripped_state_vector()

    def strip_state_vector(self, vec, follow_epbc=False):
        """
        Strip a full vector by removing EBC dofs.

        Notes
        -----
        If 'follow_epbc' is True, values of EPBC master dofs are not simply
        thrown away, but added to the corresponding slave dofs, just like when
        assembling. For vectors with state (unknown) variables it should be set
        to False, for assembled vectors it should be set to True.
        """
        return self.variables.strip_state_vector(vec, follow_epbc=follow_epbc)

    def make_full_vec(self, svec, force_value=None):
        """
        Make a full DOF vector satisfying E(P)BCs from a reduced DOF
        vector.
        """
        return self.variables.make_full_vec(svec, force_value)

    def set_variables_from_state(self, vec, step=0):
        """
        Set data (vectors of DOF values) of variables.

        Parameters
        ----------
        data : array
            The state vector.
        step : int
            The time history step, 0 (default) = current.
        """
        self.variables.set_data(vec, step=step)

    def get_state_parts(self, vec=None):
        """
        Return parts of a state vector corresponding to individual state
        variables.

        Parameters
        ----------
        vec : array, optional
            The state vector. If not given, then the data stored in the
            variables are returned instead.

        Returns
        -------
        out : dict
            The dictionary of the state parts.
        """
        return self.variables.get_state_parts(vec)

    def set_data(self, data, step=0, ignore_unknown=False):
        """
        Set data (vectors of DOF values) of variables.

        Parameters
        ----------
        data : array
            The dictionary of {variable_name : data vector}.
        step : int, optional
            The time history step, 0 (default) = current.
        ignore_unknown : bool, optional
            Ignore unknown variable names if `data` is a dict.
        """
        self.variables.set_data(data, step=step, ignore_unknown=ignore_unknown)

    def apply_ebc(self, vec, force_values=None):
        """
        Apply essential (Dirichlet) boundary conditions to a state vector.
        """
        self.variables.apply_ebc(vec, force_values=force_values)

    def apply_ic(self, vec, force_values=None):
        """
        Apply initial conditions to a state vector.
        """
        self.variables.apply_ic(vec, force_values=force_values)

    def state_to_output(self,
                        vec,
                        fill_value=None,
                        var_info=None,
                        extend=True):
        return self.variables.state_to_output(vec,
                                              fill_value=fill_value,
                                              var_info=var_info,
                                              extend=extend)

    def get_lcbc_operator(self):
        return self.variables.get_lcbc_operator()

    def evaluate(self,
                 names=None,
                 mode='eval',
                 dw_mode='vector',
                 term_mode=None,
                 asm_obj=None):
        """
        Evaluate the equations.

        Parameters
        ----------
        mode : one of 'eval', 'el_avg', 'qp', 'weak'
            The evaluation mode.
        names : str or sequence of str, optional
            Evaluate only equations of the given name(s).

        Returns
        -------
        out : dict or result
            The evaluation result. In 'weak' mode it is the
            `asm_obj`. Otherwise, it is a dict of results with equation names
            as keys or a single result for a single equation.
        """
        if names is None:
            eqs = self
            single = (len(eqs) == 1)

        else:
            single = isinstance(names, str)
            if single:
                names = [names]

            eqs = [self[eq] for eq in names]

        if mode == 'weak':
            for eq in eqs:
                eq.evaluate(mode=mode,
                            dw_mode=dw_mode,
                            term_mode=term_mode,
                            asm_obj=asm_obj)

            out = asm_obj

        else:
            out = {}
            for eq in eqs:
                eout = eq.evaluate(mode=mode,
                                   dw_mode=dw_mode,
                                   term_mode=term_mode)
                out[eq.name] = eout

            if single:
                out = out.popitem()[1]

        return out

    def eval_residuals(self, state, by_blocks=False, names=None):
        """
        Evaluate (assemble) residual vectors.

        Parameters
        ----------
        state : array
            The vector of DOF values. Note that it is needed only in
            nonlinear terms.
        by_blocks : bool
            If True, return the individual blocks composing the whole
            residual vector. Each equation should then correspond to one
            required block and should be named as `'block_name,
            test_variable_name, unknown_variable_name'`.
        names : list of str, optional
            Optionally, select only blocks with the given `names`, if
            `by_blocks` is True.

        Returns
        -------
        out : array or dict of array
            The assembled residual vector. If `by_blocks` is True, a
            dictionary is returned instead, with keys given by
            `block_name` part of the individual equation names.
        """
        self.set_variables_from_state(state)

        if by_blocks:
            names = get_default(names, self.names)

            out = {}

            get_indx = self.variables.get_indx
            for name in names:
                eq = self[name]
                key, rname, cname = [aux.strip() for aux in name.split(',')]

                ir = get_indx(rname, stripped=True, allow_dual=True)

                residual = self.create_stripped_state_vector()
                eq.evaluate(mode='weak', dw_mode='vector', asm_obj=residual)

                out[key] = residual[ir]

        else:
            out = self.create_stripped_state_vector()

            self.evaluate(mode='weak', dw_mode='vector', asm_obj=out)

        return out

    def eval_tangent_matrices(self,
                              state,
                              tangent_matrix,
                              by_blocks=False,
                              names=None):
        """
        Evaluate (assemble) tangent matrices.

        Parameters
        ----------
        state : array
            The vector of DOF values. Note that it is needed only in
            nonlinear terms.
        tangent_matrix : csr_matrix
            The preallocated CSR matrix with zero data.
        by_blocks : bool
            If True, return the individual blocks composing the whole
            matrix. Each equation should then correspond to one
            required block and should be named as `'block_name,
            test_variable_name, unknown_variable_name'`.
        names : list of str, optional
            Optionally, select only blocks with the given `names`, if
            `by_blocks` is True.

        Returns
        -------
        out : csr_matrix or dict of csr_matrix
            The assembled matrix. If `by_blocks` is True, a dictionary
            is returned instead, with keys given by `block_name` part
            of the individual equation names.
        """
        self.set_variables_from_state(state)

        if by_blocks:
            names = get_default(names, self.names)

            out = {}

            get_indx = self.variables.get_indx
            for name in names:
                eq = self[name]
                key, rname, cname = [aux.strip() for aux in eq.name.split(',')]

                ir = get_indx(rname, stripped=True, allow_dual=True)
                ic = get_indx(cname, stripped=True, allow_dual=True)

                tangent_matrix.data[:] = 0.0
                eq.evaluate(mode='weak',
                            dw_mode='matrix',
                            asm_obj=tangent_matrix)

                out[key] = tangent_matrix[ir, ic]

        else:
            tangent_matrix.data[:] = 0.0

            self.evaluate(mode='weak',
                          dw_mode='matrix',
                          asm_obj=tangent_matrix)

            out = tangent_matrix

        return out
Пример #22
0
def make_term_args(arg_shapes,
                   arg_kinds,
                   arg_types,
                   ats_mode,
                   domain,
                   material_value=None,
                   poly_space_base=None):
    from sfepy.base.base import basestr
    from sfepy.discrete import FieldVariable, Material, Variables, Materials
    from sfepy.discrete.fem import Field
    from sfepy.solvers.ts import TimeStepper
    from sfepy.mechanics.tensors import dim2sym

    omega = domain.regions['Omega']
    dim = domain.shape.dim
    sym = dim2sym(dim)

    def _parse_scalar_shape(sh):
        if isinstance(sh, basestr):
            if sh == 'D':
                return dim

            elif sh == 'S':
                return sym

            elif sh == 'N':  # General number ;)
                return 1

            else:
                return int(sh)

        else:
            return sh

    def _parse_tuple_shape(sh):
        if isinstance(sh, basestr):
            return [_parse_scalar_shape(ii.strip()) for ii in sh.split(',')]

        else:
            return (int(sh), )

    args = {}
    str_args = []
    materials = []
    variables = []
    for ii, arg_kind in enumerate(arg_kinds):
        if arg_kind != 'ts':
            if ats_mode is not None:
                extended_ats = arg_types[ii] + ('/%s' % ats_mode)

            else:
                extended_ats = arg_types[ii]

            try:
                sh = arg_shapes[arg_types[ii]]

            except KeyError:
                sh = arg_shapes[extended_ats]

        if arg_kind.endswith('variable'):
            shape = _parse_scalar_shape(sh[0] if isinstance(sh, tuple) else sh)
            field = Field.from_args('f%d' % ii,
                                    nm.float64,
                                    shape,
                                    omega,
                                    approx_order=1,
                                    poly_space_base=poly_space_base)

            if arg_kind == 'virtual_variable':
                if sh[1] is not None:
                    istate = arg_types.index(sh[1])

                else:
                    # Only virtual variable in arguments.
                    istate = -1
                    # -> Make fake variable.
                    var = FieldVariable('u-1', 'unknown', field)
                    var.set_constant(0.0)
                    variables.append(var)

                var = FieldVariable('v',
                                    'test',
                                    field,
                                    primary_var_name='u%d' % istate)

            elif arg_kind == 'state_variable':
                var = FieldVariable('u%d' % ii, 'unknown', field)
                var.set_constant(0.0)

            elif arg_kind == 'parameter_variable':
                var = FieldVariable('p%d' % ii,
                                    'parameter',
                                    field,
                                    primary_var_name='(set-to-None)')
                var.set_constant(0.0)

            variables.append(var)
            str_args.append(var.name)
            args[var.name] = var

        elif arg_kind.endswith('material'):
            if sh is None:  # Switched-off opt_material.
                continue

            prefix = ''
            if isinstance(sh, basestr):
                aux = sh.split(':')
                if len(aux) == 2:
                    prefix, sh = aux

            if material_value is None:
                material_value = 1.0

            shape = _parse_tuple_shape(sh)
            if (len(shape) > 1) or (shape[0] > 1):
                if ((len(shape) == 2) and (shape[0] == shape[1])
                        and (material_value != 0.0)):
                    # Identity matrix.
                    val = nm.eye(shape[0], dtype=nm.float64)

                else:
                    # Array.
                    val = nm.empty(shape, dtype=nm.float64)
                    val.fill(material_value)

                values = {'%sc%d' % (prefix, ii): val}

            elif (len(shape) == 1) and (shape[0] == 1):
                # Single scalar as a special value.
                values = {'.c%d' % ii: material_value}

            else:
                raise ValueError('wrong material shape! (%s)' % shape)

            mat = Material('m%d' % ii, values=values)

            materials.append(mat)
            str_args.append(mat.name + '.' + 'c%d' % ii)
            args[mat.name] = mat

        elif arg_kind == 'ts':
            ts = TimeStepper(0.0, 1.0, 1.0, 5)
            str_args.append('ts')
            args['ts'] = ts

        else:
            str_args.append('user%d' % ii)
            args[str_args[-1]] = None

    materials = Materials(materials)
    variables = Variables(variables)

    return args, str_args, materials, variables
Пример #23
0
class Equations(Container):

    @staticmethod
    def from_conf(conf, variables, regions, materials, integrals,
                  user=None, verbose=True):

        objs = OneTypeList(Equation)

        conf = copy(conf)

        ii = 0
        for name, desc in conf.iteritems():
            if verbose:
                output('equation "%s":' %  name)
                output(desc)
            eq = Equation.from_desc(name, desc, variables, regions,
                                    materials, integrals, user=user)
            objs.append(eq)
            ii += 1

        obj = Equations(objs)

        return obj

    def __init__(self, equations):
        Container.__init__(self, equations)

        self.variables = Variables(self.collect_variables())
        self.materials = Materials(self.collect_materials())

        self.domain = self.get_domain()

        self.active_bcs = set()

        self.collect_conn_info()

    def create_subequations(self, var_names, known_var_names=None):
        """
        Create sub-equations containing only terms with the given virtual
        variables.

        Parameters
        ----------
        var_names : list
            The list of names of virtual variables.
        known_var_names : list
            The list of  names of (already) known state variables.

        Returns
        -------
        subequations : Equations instance
            The sub-equations.
        """
        from sfepy.discrete import FieldVariable

        known_var_names = get_default(known_var_names, [])

        objs = []
        for iv, var_name in enumerate(var_names):
            terms = [term.copy(name=term.name)
                     for eq in self for term in eq.terms
                     if term.get_virtual_name() == var_name]

            # Make parameter variables from known state variables in terms
            # arguments.
            for known_name in known_var_names:
                for term in terms:
                    if known_name in term.arg_names:
                        ii = term.arg_names.index(known_name)
                        state = self.variables[known_name]
                        par = FieldVariable(known_name, 'parameter',
                                            state.field,
                                            primary_var_name='(set-to-None)')
                        term.args[ii] = par
                        term._kwargs[known_name] = par
                        par.set_data(state())

            new_terms = Terms(terms)
            objs.append(Equation('eq_%d' % iv, new_terms))

        subequations = Equations(objs)

        return subequations

    def get_domain(self):
        domain = None

        for eq in self:
            for term in eq.terms:
                if term.has_region:
                    domain = term.region.domain

        return domain

    def collect_materials(self):
        """
        Collect materials present in the terms of all equations.
        """
        materials = []
        for eq in self:
            materials.extend(eq.collect_materials())

        # Make the list items unique.
        materials = list(set(materials))

        return materials

    def reset_materials(self):
        """
        Clear material data so that next materials.time_update() is
        performed even for stationary materials.
        """
        self.materials.reset()

    def collect_variables(self):
        """
        Collect variables present in the terms of all equations.
        """
        variables = []
        for eq in self:
            variables.extend(eq.collect_variables())

        # Make the list items unique.
        variables = list(set(variables))

        return variables

    def get_variable(self, name):
        var = self.variables.get(name,
                                 msg_if_none='unknown variable! (%s)' % name)
        return var

    def collect_conn_info(self):
        """
        Collect connectivity information as defined by the equations.
        """
        self.conn_info = {}

        for eq in self:
            eq.collect_conn_info(self.conn_info)

        return self.conn_info

    def get_variable_names(self):
        """
        Return the list of names of all variables used in equations.
        """
        vns = set()
        for eq in self:
            for term in eq.terms:
                vns.update(term.get_variable_names())
        return list(vns)

    def get_variable_dependencies(self):
        """
        For each virtual variable get names of state/parameter variables that
        are present in terms with that virtual variable.

        The virtual variables define the actual equations and their
        dependencies define the variables needed to evaluate the equations.

        Returns
        -------
        deps : dict
            The dependencies as a dictionary with virtual variable names as
            keys and sets of state/parameter variables as values.
        """
        deps = {}
        for eq in self:
            for term in eq.terms:
                dep_list = deps.setdefault(term.get_virtual_name(), set())
                dep_list.update(term.get_state_names())

        return deps

    def invalidate_term_caches(self):
        """
        Invalidate evaluate caches of variables present in equations.
        """
        for var in self.variables:
            var.invalidate_evaluate_cache()

    def print_terms(self):
        """
        Print names of equations and their terms.
        """
        output('equations:')
        for eq in self:
            output('  %s:' % eq.name)
            for term in eq.terms:
                output('    %+.2e * %s.%d.%s(%s)'
                       % (term.sign, term.name, term.integral.order,
                          term.region.name, term.arg_str))

    def time_update(self, ts, ebcs=None, epbcs=None, lcbcs=None,
                    functions=None, problem=None, active_only=True,
                    verbose=True):
        """
        Update the equations for current time step.

        The update involves creating the mapping of active DOFs from/to
        all DOFs for all state variables, the setup of linear
        combination boundary conditions operators and the setup of
        active DOF connectivities.

        Parameters
        ----------
        ts : TimeStepper instance
            The time stepper.
        ebcs : Conditions instance, optional
            The essential (Dirichlet) boundary conditions.
        epbcs : Conditions instance, optional
            The periodic boundary conditions.
        lcbcs : Conditions instance, optional
            The linear combination boundary conditions.
        functions : Functions instance, optional
            The user functions for boundary conditions, materials, etc.
        problem : Problem instance, optional
            The problem that can be passed to user functions as a context.
        active_only : bool
            If True, the active DOF connectivities and matrix graph have
            reduced size and are created with the reduced (active DOFs only)
            numbering.
        verbose : bool
            If False, reduce verbosity.

        Returns
        -------
        graph_changed : bool
            The flag set to True if the current time step set of active
            boundary conditions differs from the set of the previous
            time step.
        """
        self.variables.time_update(ts, functions, verbose=verbose)

        active_bcs = self.variables.equation_mapping(ebcs, epbcs, ts, functions,
                                                     problem=problem,
                                                     active_only=active_only)
        graph_changed = active_only and (active_bcs != self.active_bcs)
        self.active_bcs = active_bcs

        if graph_changed or not self.variables.adof_conns:
            adcs = create_adof_conns(self.conn_info, self.variables.adi.indx,
                                     active_only=active_only)
            self.variables.set_adof_conns(adcs)

        self.variables.setup_lcbc_operators(lcbcs, ts, functions)

        for eq in self:
            for term in eq.terms:
                term.time_update(ts)

        return graph_changed

    def time_update_materials(self, ts, mode='normal', problem=None,
                              verbose=True):
        """
        Update data materials for current time and possibly also state.

        Parameters
        ----------
        ts : TimeStepper instance
            The time stepper.
        mode : 'normal', 'update' or 'force'
            The update mode, see
            :func:`sfepy.discrete.materials.Material.time_update()`.
        problem : Problem instance, optional
            The problem that can be passed to user functions as a context.
        verbose : bool
            If False, reduce verbosity.
        """
        self.materials.time_update(ts, self, mode=mode, problem=problem,
                                   verbose=verbose)

    def setup_initial_conditions(self, ics, functions=None):
        self.variables.setup_initial_conditions(ics, functions)

    def get_graph_conns(self, any_dof_conn=False, rdcs=None, cdcs=None,
                        active_only=True):
        """
        Get DOF connectivities needed for creating tangent matrix graph.

        Parameters
        ----------
        any_dof_conn : bool
            By default, only volume DOF connectivities are used, with
            the exception of trace surface DOF connectivities. If True,
            any kind of DOF connectivities is allowed.
        rdcs, cdcs : arrays, optional
            Additional row and column DOF connectivities, corresponding
            to the variables used in the equations.
        active_only : bool
            If True, the active DOF connectivities have reduced size and are
            created with the reduced (active DOFs only) numbering.

        Returns
        -------
        rdcs, cdcs : arrays
            The row and column DOF connectivities defining the matrix
            graph blocks.
        """
        if rdcs is None:
            rdcs = []
            cdcs = []

        elif cdcs is None:
            cdcs = copy(rdcs)

        else:
            assert_(len(rdcs) == len(cdcs))
            if rdcs is cdcs: # Make sure the lists are not the same object.
                rdcs = copy(rdcs)

        adcs = self.variables.adof_conns

        # Only volume dof connectivities are used, with the exception of trace
        # surface dof connectivities.
        shared = set()
        for key, ii, info in iter_dict_of_lists(self.conn_info,
                                                return_keys=True):
            rvar, cvar = info.virtual, info.state
            if (rvar is None) or (cvar is None):
                continue

            is_surface = rvar.is_surface or cvar.is_surface

            dct = info.dc_type.type
            if not (dct in ('volume', 'scalar', 'custom') or is_surface
                    or info.is_trace or any_dof_conn):
                continue

            rreg_name = info.get_region_name(can_trace=False)
            creg_name = info.get_region_name()

            rname = rvar.get_primary_name()
            rkey = (rname, rreg_name, dct, False)
            ckey = (cvar.name, creg_name, dct, info.is_trace)

            dc_key = (rkey, ckey)

            if not dc_key in shared:
                rdc = adcs[rkey]
                cdc = adcs[ckey]
                if not active_only:
                    ii = nm.where(rdc < 0)
                    rdc = rdc.copy()
                    rdc[ii] = -1 - rdc[ii]

                    ii = nm.where(cdc < 0)
                    cdc = cdc.copy()
                    cdc[ii] = -1 - cdc[ii]

                rdcs.append(rdc)
                cdcs.append(cdc)

                shared.add(dc_key)

        return rdcs, cdcs

    def create_matrix_graph(self, any_dof_conn=False, rdcs=None, cdcs=None,
                            shape=None, active_only=True, verbose=True):
        """
        Create tangent matrix graph, i.e. preallocate and initialize the
        sparse storage needed for the tangent matrix. Order of DOF
        connectivities is not important.

        Parameters
        ----------
        any_dof_conn : bool
            By default, only volume DOF connectivities are used, with
            the exception of trace surface DOF connectivities. If True,
            any kind of DOF connectivities is allowed.
        rdcs, cdcs : arrays, optional
            Additional row and column DOF connectivities, corresponding
            to the variables used in the equations.
        shape : tuple, optional
            The required shape, if it is different from the shape
            determined by the equations variables. This may be needed if
            additional row and column DOF connectivities are passed in.
        active_only : bool
            If True, the matrix graph has reduced size and is created with the
            reduced (active DOFs only) numbering.
        verbose : bool
            If False, reduce verbosity.

        Returns
        -------
        matrix : csr_matrix
            The matrix graph in the form of a CSR matrix with
            preallocated structure and zero data.
        """
        if not self.variables.has_virtuals():
            output('no matrix (no test variables)!')
            return None

        shape = get_default(shape, self.variables.get_matrix_shape())

        output('matrix shape:', shape, verbose=verbose)
        if nm.prod(shape) == 0:
            output('no matrix (zero size)!')
            return None

        rdcs, cdcs = self.get_graph_conns(any_dof_conn=any_dof_conn,
                                          rdcs=rdcs, cdcs=cdcs,
                                          active_only=active_only)

        if not len(rdcs):
            output('no matrix (empty dof connectivities)!')
            return None

        output('assembling matrix graph...', verbose=verbose)
        tt = time.clock()

        nnz, prow, icol = create_mesh_graph(shape[0], shape[1],
                                            len(rdcs), rdcs, cdcs)

        output('...done in %.2f s' % (time.clock() - tt), verbose=verbose)
        output('matrix structural nonzeros: %d (%.2e%% fill)' \
               % (nnz, float(nnz) / nm.prod(shape)), verbose=verbose)

        data = nm.zeros((nnz,), dtype=self.variables.dtype)
        matrix = sp.csr_matrix((data, icol, prow), shape)

        return matrix

    def init_time(self, ts):
        pass

    def advance(self, ts):
        for eq in self:
            for term in eq.terms:
                term.advance(ts)

        self.variables.advance(ts)

    ##
    # Interface to self.variables.
    def create_state_vector(self):
        return self.variables.create_state_vector()

    def create_stripped_state_vector(self):
        return self.variables.create_stripped_state_vector()

    def strip_state_vector(self, vec, follow_epbc=False):
        """
        Strip a full vector by removing EBC dofs.

        Notes
        -----
        If 'follow_epbc' is True, values of EPBC master dofs are not simply
        thrown away, but added to the corresponding slave dofs, just like when
        assembling. For vectors with state (unknown) variables it should be set
        to False, for assembled vectors it should be set to True.
        """
        return self.variables.strip_state_vector(vec, follow_epbc=follow_epbc)

    def make_full_vec(self, svec, force_value=None):
        """
        Make a full DOF vector satisfying E(P)BCs from a reduced DOF
        vector.
        """
        return self.variables.make_full_vec(svec, force_value)

    def set_variables_from_state(self, vec, step=0):
        """
        Set data (vectors of DOF values) of variables.

        Parameters
        ----------
        data : array
            The state vector.
        step : int
            The time history step, 0 (default) = current.
        """
        self.variables.set_data(vec, step=step)

    def get_state_parts(self, vec=None):
        """
        Return parts of a state vector corresponding to individual state
        variables.

        Parameters
        ----------
        vec : array, optional
            The state vector. If not given, then the data stored in the
            variables are returned instead.

        Returns
        -------
        out : dict
            The dictionary of the state parts.
        """
        return self.variables.get_state_parts(vec)

    def set_data(self, data, step=0, ignore_unknown=False):
        """
        Set data (vectors of DOF values) of variables.

        Parameters
        ----------
        data : array
            The dictionary of {variable_name : data vector}.
        step : int, optional
            The time history step, 0 (default) = current.
        ignore_unknown : bool, optional
            Ignore unknown variable names if `data` is a dict.
        """
        self.variables.set_data(data, step=step,
                                ignore_unknown=ignore_unknown)

    def apply_ebc(self, vec, force_values=None):
        """
        Apply essential (Dirichlet) boundary conditions to a state vector.
        """
        self.variables.apply_ebc(vec, force_values=force_values)

    def apply_ic(self, vec, force_values=None):
        """
        Apply initial conditions to a state vector.
        """
        self.variables.apply_ic(vec, force_values=force_values)

    def state_to_output(self, vec, fill_value=None, var_info=None,
                        extend=True):
        return self.variables.state_to_output(vec,
                                              fill_value=fill_value,
                                              var_info=var_info,
                                              extend=extend)

    def get_lcbc_operator(self):
        return self.variables.get_lcbc_operator()

    def evaluate(self, names=None, mode='eval', dw_mode='vector',
                 term_mode=None, asm_obj=None):
        """
        Evaluate the equations.

        Parameters
        ----------
        mode : one of 'eval', 'el_avg', 'qp', 'weak'
            The evaluation mode.
        names : str or sequence of str, optional
            Evaluate only equations of the given name(s).

        Returns
        -------
        out : dict or result
            The evaluation result. In 'weak' mode it is the
            `asm_obj`. Otherwise, it is a dict of results with equation names
            as keys or a single result for a single equation.
        """
        if names is None:
            eqs = self
            single = (len(eqs) == 1)

        else:
            single = isinstance(names, str)
            if single:
                names = [names]

            eqs = [self[eq] for eq in names]

        if mode == 'weak':
            for eq in eqs:
                eq.evaluate(mode=mode, dw_mode=dw_mode,
                            term_mode=term_mode, asm_obj=asm_obj)

            out = asm_obj

        else:
            out = {}
            for eq in eqs:
                eout = eq.evaluate(mode=mode, dw_mode=dw_mode,
                                   term_mode=term_mode)
                out[eq.name] = eout

            if single:
                out = out.popitem()[1]

        return out

    def eval_residuals(self, state, by_blocks=False, names=None):
        """
        Evaluate (assemble) residual vectors.

        Parameters
        ----------
        state : array
            The vector of DOF values. Note that it is needed only in
            nonlinear terms.
        by_blocks : bool
            If True, return the individual blocks composing the whole
            residual vector. Each equation should then correspond to one
            required block and should be named as `'block_name,
            test_variable_name, unknown_variable_name'`.
        names : list of str, optional
            Optionally, select only blocks with the given `names`, if
            `by_blocks` is True.

        Returns
        -------
        out : array or dict of array
            The assembled residual vector. If `by_blocks` is True, a
            dictionary is returned instead, with keys given by
            `block_name` part of the individual equation names.
        """
        self.set_variables_from_state(state)

        if by_blocks:
            names = get_default(names, self.names)

            out = {}

            get_indx = self.variables.get_indx
            for name in names:
                eq = self[name]
                key, rname, cname = [aux.strip()
                                     for aux in name.split(',')]

                ir = get_indx(rname, stripped=True, allow_dual=True)

                residual = self.create_stripped_state_vector()
                eq.evaluate(mode='weak', dw_mode='vector', asm_obj=residual)

                out[key] = residual[ir]

        else:
            out = self.create_stripped_state_vector()

            self.evaluate(mode='weak', dw_mode='vector', asm_obj=out)

        return out

    def eval_tangent_matrices(self, state, tangent_matrix,
                              by_blocks=False, names=None):
        """
        Evaluate (assemble) tangent matrices.

        Parameters
        ----------
        state : array
            The vector of DOF values. Note that it is needed only in
            nonlinear terms.
        tangent_matrix : csr_matrix
            The preallocated CSR matrix with zero data.
        by_blocks : bool
            If True, return the individual blocks composing the whole
            matrix. Each equation should then correspond to one
            required block and should be named as `'block_name,
            test_variable_name, unknown_variable_name'`.
        names : list of str, optional
            Optionally, select only blocks with the given `names`, if
            `by_blocks` is True.

        Returns
        -------
        out : csr_matrix or dict of csr_matrix
            The assembled matrix. If `by_blocks` is True, a dictionary
            is returned instead, with keys given by `block_name` part
            of the individual equation names.
        """
        self.set_variables_from_state(state)

        if by_blocks:
            names = get_default(names, self.names)

            out = {}

            get_indx = self.variables.get_indx
            for name in names:
                eq = self[name]
                key, rname, cname = [aux.strip()
                                     for aux in eq.name.split(',')]

                ir = get_indx(rname, stripped=True, allow_dual=True)
                ic = get_indx(cname, stripped=True, allow_dual=True)

                tangent_matrix.data[:] = 0.0
                eq.evaluate(mode='weak', dw_mode='matrix',
                            asm_obj=tangent_matrix)

                out[key] = tangent_matrix[ir, ic]

        else:
            tangent_matrix.data[:] = 0.0

            self.evaluate(mode='weak', dw_mode='matrix', asm_obj=tangent_matrix)

            out = tangent_matrix

        return out