Пример #1
0
def _test_dataset():
    import sflow.py as py

    data = dataset_trainA(16)
    with tf.feeding() as (sess, coord):
        while not coord.should_stop():
            py.plt.imshow(data.eval())
            if not py.plot_pause():
                break
Пример #2
0
def _test():
    import sflow.py as py

    data = dataset(16)
    with tf.feeding() as (sess, coord):
        while not coord.should_stop():
            d = sess.run(data)
            print(d.shape)
            py.plt.imshow(d)
            if not py.plt.plot_pause():
                break
Пример #3
0
def train_test():
    # model build
    data = helen.trainset(batch=16, threads=8)
    model = face_parse(data.image, data.label)

    optim = tf.train.AdamOptimizer(learning_rate=0.001)
    trainop = optim.minimize(model.loss)  # train op

    tf.summary.scalar('loss', model.loss)
    # tf.summary_loss(model.losses)

    summary = tf.summary.merge_all()
    twriter = tf.summary.FileWriter('/tmp/face_parse/005')

    tf.global_variables_initializer().run()

    with tf.feeding() as (sess, coord):
        i = 0
        while True:
            s, loss, _ = sess.run([summary, model.loss, trainop])
            # loss = sess.run([model.loss, trainop])
            print(loss)
            twriter.add_summary(s, i)
            i += 1
Пример #4
0
            # remove background image
            bg = 1. - label[:, :, :, :1]
            image = image * bg

    return tf.dic(image=image, label=label)


def label_to_rgb(label):
    """
    utility for viewing label in a glance
    :param label: [b x h x w x 11]
    :return: [b x h x w x 3]
    """
    pass


if __name__ == '__main__':
    import sflow.tf as tf
    d = trainset(16)
    import matplotlib.pyplot as plt

    with tf.feeding() as (sess, coord):
        while not coord.should_stop():
            out = sess.run(d)

            print(out.image.shape)
            print(out.label.shape)

            plt.imshow(out.image[0])
            plt.show()