def _prepare_dataset(self):
     """Return datasets for the experiment periods containing the total load
     for a subset of users in the experiment."""
     loads = pd.concat(ul.mean_experiment_load_for_user_subset(self._subset_size,
                                                          self._subset_seed))
     return [ul.add_temperatures(loads, period) 
             for period in ul.experiment_periods()]
 def _prepare_dataset(self):
     """Return datasets for the experiment periods containing loads and
     temperatures for the given user, or for all users in the experiment if
     total_load is True."""
     temps = read_temperatures()
     loads = ul.tempfeeder_exp()[self.user_id]
     return [self._join_temp_and_load(temps, loads, period) 
             for period in ul.experiment_periods()]
 def _prepare_dataset(self):
     """Return datasets for the experiment periods containing the total load
     for all users in the experiment."""
     print "Using total load rather than per-user load."
     temps = read_temperatures()
     loads = pd.concat(ul.total_experiment_load())
     return [self._join_temp_and_load(temps, loads, period) 
             for period in ul.experiment_periods()]
 def _prepare_dataset(self):
     """Return datasets for the experiment periods containing the total load
     for all users in the experiment."""
     loads = pd.concat(ul.total_experiment_load())
     return [
         ul.add_temperatures(loads, period)
         for period in ul.experiment_periods()
     ]
 def _prepare_dataset(self):
     """Return datasets for the experiment periods containing loads and
     temperatures for the given dataset."""
     loads = ul.tempfeeder_exp()[self.user_id]
     return [
         ul.add_temperatures(loads, period)
         for period in ul.experiment_periods()
     ]
Пример #6
0
 def _prepare_dataset(self):
     """Return datasets for the experiment periods containing loads and
     temperatures for the given user, or for all users in the experiment if
     total_load is True."""
     temps = read_temperatures()
     loads = ul.tempfeeder_exp()[self.user_id]
     return [
         self._join_temp_and_load(temps, loads, period)
         for period in ul.experiment_periods()
     ]
Пример #7
0
 def _prepare_dataset(self):
     """Return datasets for the experiment periods containing the total load
     for all users in the experiment."""
     print "Using total load rather than per-user load."
     temps = read_temperatures()
     loads = pd.concat(ul.total_experiment_load())
     return [
         self._join_temp_and_load(temps, loads, period)
         for period in ul.experiment_periods()
     ]
 def _prepare_dataset(self):
     """Return datasets for the experiment periods containing the total load
     for a subset of users in the experiment."""
     loads = pd.concat(
         ul.mean_experiment_load_for_user_subset(self._subset_size,
                                                 self._subset_seed))
     return [
         ul.add_temperatures(loads, period)
         for period in ul.experiment_periods()
     ]
 def _prepare_dataset(self):
     """Return datasets for the experiment periods containing the total load
     for all users in the experiment."""
     loads = pd.concat(ul.total_experiment_load())
     return [ul.add_temperatures(loads, period) 
             for period in ul.experiment_periods()]
 def _prepare_dataset(self):
     """Return datasets for the experiment periods containing loads and
     temperatures for the given dataset."""
     loads = ul.tempfeeder_exp()[self.user_id]
     return [ul.add_temperatures(loads, period) 
             for period in ul.experiment_periods()]
Пример #11
0
 def setUpClass(cls):
     cls.data = ul.add_temperatures(ul.total_experiment_load()[0],
                                    ul.experiment_periods()[0])