def prepare(dataset, epochs, batch_size, input_shape, output_shape):
    stream = ds.epochs(dataset.image_ids, epochs)
    stream = ds.stream(
        lambda x: (dataset.load_image(x), dataset.load_output(x)),
        stream)
    stream = ds.stream(ds.apply_to_x(ds.resize(input_shape)), stream)
    stream = ds.stream(ds.apply_to_y(resize_all(output_shape)), stream)

    stream = ds.bufferize(stream, size=20)

    batch = ds.stream_batch(stream, size=batch_size, fun=ds.pack_elements)
    batch = ds.stream(ds.apply_to_y(ds.apply_to_xn(
        lambda x: ds.image2mask(x).reshape(x.shape + (1,)))), batch)

    return batch
def get_dataset(dataset, epochs, input_shape, output_shape, colored=True):
    shapes = ds.epochs(dataset, epochs)
    shapes = ds.stream(
        ds.apply_to_x(
            ds.apply_to_xn(lambda x: ds.colorize(
                cv2.imread(x[0]), x[1] if colored else [255, 0, 0]))), shapes)
    #  shapes = ds.stream(ds.apply_to_x(check), shapes)
    shapes = ds.stream(ds.apply_to_x(sum), shapes)
    shapes = ds.stream(ds.apply_to_x(lambda x: cv2.resize(x, input_shape[:2])),
                       shapes)
    shapes = ds.stream(
        ds.apply_to_y(lambda x: to_categorical(x, output_shape)), shapes)
    shapes = ds.stream_batch(
        shapes, lambda x, y: [np.array(x), np.array(y)], batch_size)
    return shapes
Пример #3
0
def prepare(dataset, epochs, batch_size, input_shape):
    stream = ds.epochs(dataset.image_ids, epochs)
    stream = ds.stream(
        lambda x: (dataset.load_image(x), dataset.load_output(x)), stream)
    stream = ds.stream(ds.apply_to_xn(ds.resize(input_shape[:2])), stream)
    #  stream = ds.stream(ds.apply_to_x(check), stream)

    stream = ds.bufferize(stream, size=20)

    batch = ds.stream_batch(stream, size=batch_size)
    batch = ds.stream(
        ds.apply_to_y(lambda x: ds.mask2image(x).reshape(x.shape + (1, ))),
        batch)

    return batch
Пример #4
0
def prepare(dataset, epochs, batch_size, input_shape, output_shape, load_image,
            resizer):
    stream = ds.epochs(dataset.image_ids, epochs)
    stream = ds.stream(
        lambda x: (load_image(x), resizer(dataset.load_output(x))), stream)

    def transpose(x, y):
        y = np.array(y)
        return np.array(x), y.reshape((1, ) + y.shape)

    batch = ds.stream_batch(stream, size=batch_size, fun=transpose)
    batch = ds.stream(
        ds.apply_to_y(
            ds.apply_to_xn(lambda x: ds.image2mask(x).reshape(x.shape +
                                                              (1, )))), batch)

    return batch
Пример #5
0
def prepare(dataset, input_shape, output_shape):
    stream = ds.epochs(dataset.image_ids, epochs=1)
    stream = ds.stream(
        lambda x: (dataset._img_filenames[x], (x, dataset.load_output(x))),
        stream)
    #  stream = ds.stream(ds.apply_to_x(ds.resize(input_shape)), stream)
    stream = ds.stream(ds.apply_to_y(resize_all(dataset, output_shape)),
                       stream)

    stream = ds.bufferize(stream, size=10)

    batch = ds.stream_batch(stream, size=10, fun=ds.pack_elements)
    #  batch = ds.stream(ds.apply_to_y(check), batch)
    batch = ds.stream(
        ds.apply_to_y(ds.apply_to_xn(lambda x: ds.image2mask(x))), batch)

    return batch