Пример #1
0
def main(args):
    # Write arparse arguments to YAML config
    logger.debug("Write argparse arguments to YAML config.")
    output_config = {}
    output_config["base_path"] = args.base_path
    output_config["output_path"] = args.output_path
    output_config["output_filename"] = args.output_filename
    output_config["tree_path"] = args.tree_path
    output_config["event_branch"] = args.event_branch
    output_config["training_weight_branch"] = args.training_weight_branch

    # Define era
    if "2016" in args.era:
        from shape_producer.estimation_methods_2016 import DataEstimation, HTTEstimation, ggHEstimation, qqHEstimation, VHEstimation, ZTTEstimation, ZTTEstimationTT, ZLEstimationMTSM, ZLEstimationETSM, ZLEstimationTT, ZJEstimationMT, ZJEstimationET, ZJEstimationTT, WEstimationRaw, TTTEstimationMT, TTTEstimationET, TTTEstimationTT, TTJEstimationMT, TTJEstimationET, TTJEstimationTT, VVEstimation, QCDEstimationMT, QCDEstimationET, QCDEstimationTT, ZTTEmbeddedEstimation, TTLEstimationMT, TTLEstimationET, TTLEstimationTT, TTTTEstimationMT, TTTTEstimationET, EWKWpEstimation, EWKWmEstimation, EWKZllEstimation, EWKZnnEstimation
        from shape_producer.era import Run2016
        era = Run2016(args.database)
    else:
        logger.fatal("Era {} is not implemented.".format(args.era))
        raise Exception

    ############################################################################

    # Channel: mt
    if args.channel == "mt":
        channel = MTSM()

        # Set up `processes` part of config
        output_config["processes"] = {}

        # Additional cuts
        additional_cuts = Cuts()
        logger.warning("Use additional cuts for mt: %s",
                       additional_cuts.expand())

        # MC-driven processes
        # NOTE: Define here the mappig of the process estimations to the training classes
        classes_map = {
            "ggH": "ggh",
            "qqH": "qqh",
            "ZTT": "ztt",
            "EMB": "ztt",
            "ZL": "zll",
            "ZJ": "zll",
            "TTT": "tt",
            "TTL": "tt",
            "TTJ": "tt",
            "W": "w",
            "EWKWp": "w",
            "EWKWm": "w",
            "VV": "misc",
            "EWKZll": "misc",
            "EWKZnn": "misc"
        }
        for estimation in [
                ggHEstimation(era, args.base_path, channel),
                qqHEstimation(era, args.base_path, channel),
                ZTTEstimation(era, args.base_path, channel),
                #ZTTEmbeddedEstimation(era, args.base_path, channel),
                ZLEstimationMTSM(era, args.base_path, channel),
                ZJEstimationMT(era, args.base_path, channel),
                TTTEstimationMT(era, args.base_path, channel),
                #TTLEstimationMT(era, args.base_path, channel),
                TTJEstimationMT(era, args.base_path, channel),
                WEstimationRaw(era, args.base_path, channel),
                EWKWpEstimation(era, args.base_path, channel),
                EWKWmEstimation(era, args.base_path, channel),
                VVEstimation(era, args.base_path, channel),
                EWKZllEstimation(era, args.base_path, channel),
                #EWKZnnEstimation(era, args.base_path, channel)
        ]:
            output_config["processes"][estimation.name] = {
                "files": [
                    str(f).replace(args.base_path + "/", "")
                    for f in estimation.get_files()
                ],
                "cut_string": (estimation.get_cuts() + channel.cuts +
                               additional_cuts).expand(),
                "weight_string":
                estimation.get_weights().extract(),
                "class":
                classes_map[estimation.name]
            }

        # Same sign selection for data-driven QCD
        estimation = DataEstimation(era, args.base_path, channel)
        estimation.name = "QCD"
        channel_ss = copy.deepcopy(channel)
        channel_ss.cuts.get("os").invert()
        output_config["processes"][estimation.name] = {
            "files": [
                str(f).replace(args.base_path + "/", "")
                for f in estimation.get_files()
            ],
            "cut_string": (estimation.get_cuts() + channel_ss.cuts +
                           additional_cuts).expand(),
            "weight_string":
            estimation.get_weights().extract(),
            "class":
            "ss"
        }

    ############################################################################

    # Channel: et
    if args.channel == "et":
        channel = ETSM()

        # Set up `processes` part of config
        output_config["processes"] = {}

        # Additional cuts
        additional_cuts = Cuts()
        logger.warning("Use additional cuts for et: %s",
                       additional_cuts.expand())

        # MC-driven processes
        # NOTE: Define here the mappig of the process estimations to the training classes
        classes_map = {
            "ggH": "ggh",
            "qqH": "qqh",
            "ZTT": "ztt",
            "EMB": "ztt",
            "ZL": "zll",
            "ZJ": "zll",
            "TTT": "tt",
            "TTL": "tt",
            "TTJ": "tt",
            "W": "w",
            "EWKWp": "w",
            "EWKWm": "w",
            "VV": "misc",
            "EWKZll": "misc",
            "EWKZnn": "misc"
        }
        for estimation in [
                ggHEstimation(era, args.base_path, channel),
                qqHEstimation(era, args.base_path, channel),
                ZTTEstimation(era, args.base_path, channel),
                #ZTTEmbeddedEstimation(era, args.base_path, channel),
                ZLEstimationETSM(era, args.base_path, channel),
                ZJEstimationET(era, args.base_path, channel),
                TTTEstimationET(era, args.base_path, channel),
                #TTLEstimationET(era, args.base_path, channel),
                TTJEstimationET(era, args.base_path, channel),
                WEstimationRaw(era, args.base_path, channel),
                EWKWpEstimation(era, args.base_path, channel),
                EWKWmEstimation(era, args.base_path, channel),
                VVEstimation(era, args.base_path, channel),
                EWKZllEstimation(era, args.base_path, channel),
                #EWKZnnEstimation(era, args.base_path, channel)
        ]:
            output_config["processes"][estimation.name] = {
                "files": [
                    str(f).replace(args.base_path + "/", "")
                    for f in estimation.get_files()
                ],
                "cut_string": (estimation.get_cuts() + channel.cuts +
                               additional_cuts).expand(),
                "weight_string":
                estimation.get_weights().extract(),
                "class":
                classes_map[estimation.name]
            }

        # Same sign selection for data-driven QCD
        estimation = DataEstimation(era, args.base_path, channel)
        estimation.name = "QCD"
        channel_ss = copy.deepcopy(channel)
        channel_ss.cuts.get("os").invert()
        output_config["processes"][estimation.name] = {
            "files": [
                str(f).replace(args.base_path + "/", "")
                for f in estimation.get_files()
            ],
            "cut_string": (estimation.get_cuts() + channel_ss.cuts +
                           additional_cuts).expand(),
            "weight_string":
            estimation.get_weights().extract(),
            "class":
            "ss"
        }

    ############################################################################

    # Channel: tt
    if args.channel == "tt":
        channel = TTSM()

        # Set up `processes` part of config
        output_config["processes"] = {}

        # Additional cuts
        additional_cuts = Cuts()
        logger.warning("Use additional cuts for tt: %s",
                       additional_cuts.expand())

        # MC-driven processes
        # NOTE: Define here the mappig of the process estimations to the training classes
        classes_map = {
            "ggH": "ggh",
            "qqH": "qqh",
            "ZTT": "ztt",
            "EMB": "ztt",
            "ZL": "misc",
            "ZJ": "misc",
            "TTT": "misc",
            "TTL": "misc",
            "TTJ": "misc",
            "W": "misc",
            "EWKWp": "misc",
            "EWKWm": "misc",
            "VV": "misc",
            "EWKZll": "misc",
            "EWKZnn": "misc"
        }
        for estimation in [
                ggHEstimation(era, args.base_path, channel),
                qqHEstimation(era, args.base_path, channel),
                ZTTEstimationTT(era, args.base_path, channel),
                #ZTTEmbeddedEstimation(era, args.base_path, channel),
                ZLEstimationTT(era, args.base_path, channel),
                ZJEstimationTT(era, args.base_path, channel),
                TTTEstimationTT(era, args.base_path, channel),
                #TTLEstimationTT(era, args.base_path, channel),
                TTJEstimationTT(era, args.base_path, channel),
                WEstimationRaw(era, args.base_path, channel),
                EWKWpEstimation(era, args.base_path, channel),
                EWKWmEstimation(era, args.base_path, channel),
                VVEstimation(era, args.base_path, channel),
                EWKZllEstimation(era, args.base_path, channel),
                #EWKZnnEstimation(era, args.base_path, channel)
        ]:
            output_config["processes"][estimation.name] = {
                "files": [
                    str(f).replace(args.base_path + "/", "")
                    for f in estimation.get_files()
                ],
                "cut_string": (estimation.get_cuts() + channel.cuts +
                               additional_cuts).expand(),
                "weight_string":
                estimation.get_weights().extract(),
                "class":
                classes_map[estimation.name]
            }

        # Same sign selection for data-driven QCD
        estimation = DataEstimation(era, args.base_path, channel)
        estimation.name = "QCD"
        channel_iso = copy.deepcopy(channel)
        channel_iso.cuts.remove("tau_2_iso")
        channel_iso.cuts.add(
            Cut("byTightIsolationMVArun2v1DBoldDMwLT_2<0.5", "tau_2_iso"))
        channel_iso.cuts.add(
            Cut("byLooseIsolationMVArun2v1DBoldDMwLT_2>0.5",
                "tau_2_iso_loose"))
        output_config["processes"][estimation.name] = {
            "files": [
                str(f).replace(args.base_path + "/", "")
                for f in estimation.get_files()
            ],
            "cut_string": (estimation.get_cuts() + channel_iso.cuts +
                           additional_cuts).expand(),
            "weight_string":
            estimation.get_weights().extract(),
            "class":
            "noniso"
        }

    ############################################################################

    # Write output config
    logger.info("Write config to file: {}".format(args.output_config))
    yaml.dump(output_config,
              open(args.output_config, 'w'),
              default_flow_style=False)
Пример #2
0
def main(args):
    # Define era
    if "2016" in args.era:
        from shape_producer.era import Run2016
        era = Run2016(args.datasets)
    elif "2017" in args.era:
        from shape_producer.era import Run2017
        era = Run2017(args.datasets)
    else:
        logger.fatal("Era {} is not implemented.".format(args.era))
        raise Exception

    # Load variables
    variables = yaml.load(open(args.variables))["selected_variables"]

    # Define bins and range of binning for variables in enabled channels
    channel_dict = {
        "em": {
            "2016": EMSM2016(),
            "2017": EMSM2017()
        },
        "et": {
            "2016": ETSM2016(),
            "2017": ETSM2017()
        },
        "mt": {
            "2016": MTSM2016(),
            "2017": MTSM2017()
        },
        "tt": {
            "2016": TTSM2016(),
            "2017": TTSM2017()
        },
    }
    friend_directories_dict = {
        "em": args.em_friend_directories,
        "et": args.et_friend_directories,
        "mt": args.mt_friend_directories,
        "tt": args.tt_friend_directories,
    }
    percentiles = [
        1.0, 10.0, 20.0, 30.0, 40.0, 50.0, 60.0, 70.0, 80.0, 90.0, 99.0
    ]

    config = {"gof": {}}

    for ch in channel_dict:
        # Get properties
        if "2016" in args.era:
            eraname = "2016"
        elif "2017" in args.era:
            eraname = "2017"
        channel = channel_dict[ch][eraname]
        logger.info("Channel: %s" % ch)
        dict_ = {}
        additional_cuts = Cuts()
        logger.warning("Use additional cuts for %s: %s" %
                       (ch, additional_cuts.expand()))
        dict_ = get_properties(dict_, era, channel, args.directory,
                               additional_cuts)

        # Build chain
        dict_["tree_path"] = "%s_nominal/ntuple" % ch
        chain = build_chain(dict_, friend_directories_dict[ch])

        # Get percentiles and calculate 1d binning
        binning = get_1d_binning(ch, chain, variables[int(eraname)][ch],
                                 percentiles)

        # Add binning for unrolled 2d distributions
        binning = add_2d_unrolled_binning(variables[int(eraname)][ch], binning)

        # Append binning to config
        config["gof"][ch] = binning

    # Write config
    logger.info("Write binning config to %s.", args.output)
    yaml.dump(config, open(args.output, 'w'))
Пример #3
0
def main(args):
    # Write arparse arguments to YAML config
    logger.debug("Write argparse arguments to YAML config.")
    output_config = {}
    output_config["base_path"] = args.base_path
    output_config["friend_paths"] = args.friend_paths
    output_config["output_path"] = args.output_path
    output_config["output_filename"] = args.output_filename
    output_config["tree_path"] = args.tree_path
    output_config["event_branch"] = args.event_branch
    output_config["training_weight_branch"] = args.training_weight_branch

    # Define era
    if "2016" in args.era:
        from shape_producer.estimation_methods_2016 import DataEstimation, ggHEstimation, qqHEstimation, ZTTEstimation, ZLEstimation, ZJEstimation, WEstimation, TTTEstimation, TTJEstimation, ZTTEmbeddedEstimation, TTLEstimation, EWKZEstimation, VVLEstimation, VVJEstimation, VVEstimation, VVTEstimation
        #QCDEstimation_SStoOS_MTETEM, QCDEstimationTT, EWKWpEstimation, EWKWmEstimation, , VHEstimation, HTTEstimation,
        from shape_producer.era import Run2016
        era = Run2016(args.database)

    elif "2017" in args.era:
        from shape_producer.estimation_methods_2017 import DataEstimation, ZTTEstimation, ZJEstimation, ZLEstimation, TTLEstimation, TTJEstimation, TTTEstimation, VVTEstimation, VVJEstimation, VVLEstimation, WEstimation, ggHEstimation, qqHEstimation, EWKZEstimation, ZTTEmbeddedEstimation

        from shape_producer.era import Run2017
        era = Run2017(args.database)

    elif "2018" in args.era:
        from shape_producer.estimation_methods_2018 import DataEstimation, ZTTEstimation, ZJEstimation, ZLEstimation, TTLEstimation, TTJEstimation, TTTEstimation, VVTEstimation, VVJEstimation, VVLEstimation, WEstimation, ggHEstimation, qqHEstimation, EWKZEstimation, ZTTEmbeddedEstimation

        from shape_producer.era import Run2018
        era = Run2018(args.database)
    else:
        logger.fatal("Era {} is not implemented.".format(args.era))
        raise Exception

    def estimationMethodAndClassMapGenerator():
        ###### common processes
        classes_map = {"ggH": "ggh", "qqH": "qqh", "EWKZ": "misc"}
        estimationMethodList = [
            ggHEstimation("ggH", era, args.base_path, channel),
            qqHEstimation("qqH", era, args.base_path, channel),
            EWKZEstimation(era, args.base_path, channel),
            VVLEstimation(era, args.base_path, channel),
            WEstimation(era, args.base_path, channel)
        ]
        ######## Check for emb vs MC
        if args.training_z_estimation_method == "emb":
            classes_map["EMB"] = "ztt"
            estimationMethodList.extend(
                [ZTTEmbeddedEstimation(era, args.base_path, channel)])

        elif args.training_z_estimation_method == "mc":
            classes_map["ZTT"] = "ztt"
            estimationMethodList.extend([
                ZTTEstimation(era, args.base_path, channel),
                TTTEstimation(era, args.base_path, channel),
                VVTEstimation(era, args.base_path, channel)
            ])
        else:
            logger.fatal(
                "No valid training-z-estimation-method! Options are emb, mc. Argument was {}"
                .format(args.training_z_estimation_method))
            raise Exception

        ##### TT* zl,zj processes
        estimationMethodList.extend([
            TTLEstimation(era, args.base_path, channel),
            ZLEstimation(era, args.base_path, channel)
        ])
        # less data-> less categories for tt
        if args.channel == "tt":
            classes_map.update({
                "TTT": "misc",
                "TTL": "misc",
                "TTJ": "misc",
                "ZL": "misc",
                "ZJ": "misc"
            })
            estimationMethodList.extend([
                ZJEstimation(era, args.base_path, channel),
                TTJEstimation(era, args.base_path, channel)
            ])
        ## not TTJ,ZJ for em
        elif args.channel == "em":
            classes_map.update({"TTT": "tt", "TTL": "tt", "ZL": "misc"})
        else:
            classes_map.update({
                "TTT": "tt",
                "TTL": "tt",
                "TTJ": "tt",
                "ZL": "zll",
                "ZJ": "zll"
            })
            estimationMethodList.extend([
                ZJEstimation(era, args.base_path, channel),
                TTJEstimation(era, args.base_path, channel)
            ])
        ###w:
        # estimation metho already included, just different mapping fror et and mt
        if args.channel in ["et", "mt"]:
            classes_map["W"] = "w"
        else:
            classes_map["W"] = "misc"

        #####  VV/[VVT,VVL,VVJ] split
        # VVL in common, VVT in "EMBvsMC"
        if args.channel == "em":
            classes_map.update({"VVT": "db", "VVL": "db"})
        else:
            classes_map.update({"VVT": "misc", "VVL": "misc", "VVJ": "misc"})
            estimationMethodList.extend([
                VVJEstimation(era, args.base_path, channel),
            ])
        ### QCD class

        if args.channel == "tt":
            classes_map["QCD"] = "noniso"
        else:
            classes_map["QCD"] = "ss"
        return ([classes_map, estimationMethodList])

    channelDict = {}
    channelDict["2016"] = {
        "mt": MTSM2016(),
        "et": ETSM2016(),
        "tt": TTSM2016(),
        "em": EMSM2016()
    }
    channelDict["2017"] = {
        "mt": MTSM2017(),
        "et": ETSM2017(),
        "tt": TTSM2017(),
        "em": EMSM2017()
    }
    channelDict["2018"] = {
        "mt": MTSM2018(),
        "et": ETSM2018(),
        "tt": TTSM2018(),
        "em": EMSM2018()
    }

    channel = channelDict[args.era][args.channel]

    # Set up `processes` part of config
    output_config["processes"] = {}

    # Additional cuts
    additional_cuts = Cuts()
    logger.warning("Use additional cuts for mt: %s", additional_cuts.expand())

    classes_map, estimationMethodList = estimationMethodAndClassMapGenerator()

    ##MC+/Embedding Processes
    for estimation in estimationMethodList:
        output_config["processes"][estimation.name] = {
            "files": [
                str(f).replace(args.base_path.rstrip("/") + "/", "")
                for f in estimation.get_files()
            ],
            "cut_string":
            (estimation.get_cuts() + channel.cuts + additional_cuts).expand(),
            "weight_string":
            estimation.get_weights().extract(),
            "class":
            classes_map[estimation.name]
        }
    ###
    # Same sign selection for data-driven QCD
    estimation = DataEstimation(era, args.base_path, channel)
    estimation.name = "QCD"
    channel_qcd = copy.deepcopy(channel)

    if args.channel != "tt":
        ## os= opposite sign
        channel_qcd.cuts.get("os").invert()
    # Same sign selection for data-driven QCD
    else:
        channel_qcd.cuts.remove("tau_2_iso")
        channel_qcd.cuts.add(
            Cut("byTightIsolationMVArun2017v2DBoldDMwLT2017_2<0.5",
                "tau_2_iso"))
        channel_qcd.cuts.add(
            Cut("byLooseIsolationMVArun2017v2DBoldDMwLT2017_2>0.5",
                "tau_2_iso_loose"))

    output_config["processes"][estimation.name] = {
        "files": [
            str(f).replace(args.base_path.rstrip("/") + "/", "")
            for f in estimation.get_files()
        ],
        "cut_string":
        (estimation.get_cuts() + channel_qcd.cuts + additional_cuts).expand(),
        "weight_string":
        estimation.get_weights().extract(),
        "class":
        classes_map[estimation.name]
    }

    #####################################
    # Write output config
    logger.info("Write config to file: {}".format(args.output_config))
    yaml.dump(output_config,
              open(args.output_config, 'w'),
              default_flow_style=False)
Пример #4
0
def main(args):
    # Write arparse arguments to YAML config
    logger.debug("Write argparse arguments to YAML config.")
    output_config = {}
    output_config["base_path"] = args.base_path
    output_config["friend_paths"] = args.friend_paths
    output_config["output_path"] = args.output_path
    output_config["output_filename"] = args.output_filename
    output_config["tree_path"] = args.tree_path
    output_config["event_branch"] = args.event_branch
    output_config["training_weight_branch"] = args.training_weight_branch

    # Define era
    if "2016" in args.era:
        from shape_producer.estimation_methods_2016 import ggHEstimation, qqHEstimation, HWWEstimation
        from shape_producer.era import Run2016
        era = Run2016(args.database)

    elif "2017" in args.era:
        from shape_producer.estimation_methods_2017 import ggHEstimation, qqHEstimation, HWWEstimation, DataEstimation
        from shape_producer.era import Run2017
        era = Run2017(args.database)
    else:
        logger.fatal("Era {} is not implemented.".format(args.era))
        raise Exception

    def estimationMethodAndClassMapGenerator():
        estimationMethodList = [
            DataEstimation(era, args.base_path, channel),
            ggHEstimation("ggH125", era, args.base_path, channel),
            qqHEstimation("qqH125", era, args.base_path, channel),
            HWWEstimation(era, args.base_path, channel),
        ]
        return (estimationMethodList)

    channelDict = {}
    channelDict["2016"] = {
        "mt": MTSM2016(),
        "et": ETSM2016(),
        "tt": TTSM2016(),
        "em": EMSM2016()
    }
    channelDict["2017"] = {
        "mt": MTSM2017(),
        "et": ETSM2017(),
        "tt": TTSM2017(),
        "em": EMSM2017()
    }

    channel = channelDict[args.era][args.channel]

    # Set up `processes` part of config
    output_config["processes"] = {}

    # Additional cuts
    additional_cuts = Cuts()
    logger.warning("Use additional cuts for mt: %s", additional_cuts.expand())

    estimationMethodList = estimationMethodAndClassMapGenerator()

    for estimation in estimationMethodList:
        output_config["processes"][estimation.name] = {
            "files": [
                str(f).replace(args.base_path.rstrip("/") + "/", "")
                for f in estimation.get_files()
            ],
            "cut_string":
            (estimation.get_cuts() + channel.cuts + additional_cuts).expand(),
            "weight_string":
            estimation.get_weights().extract(),
        }

    # Write output config
    if not os.path.exists(args.output_path):
        os.makedirs(args.output_path)
    logger.info("Write config to file: {}".format(args.output_config))
    yaml.dump(output_config,
              open(args.output_config, 'w'),
              default_flow_style=False)
def main(args):
    # Define era
    if "2016" in args.era:
        from shape_producer.era import Run2016
        era = Run2016(args.datasets)
    else:
        logger.fatal("Era {} is not implemented.".format(args.era))
        raise Exception

    # Load variables
    variables = yaml.load(open(args.variables))["variables"]

    # Define bins and range of binning for variables in enabled channels
    channels = ["et", "mt", "tt"]
    num_borders = 9
    min_percentile = 1.0
    max_percentile = 99.0

    config = {"gof": {}}

    # Channel: ET
    if "et" in channels:
        # Get properties
        channel = ETSM()
        logger.info("Channel: et")
        dict_ = {}
        additional_cuts = Cuts()
        logger.warning("Use additional cuts for et: %s",
                       additional_cuts.expand())
        dict_ = get_properties(dict_, era, channel, args.directory,
                               additional_cuts)

        # Build chain
        dict_["tree_path"] = "et_nominal/ntuple"
        chain = build_chain(dict_)

        # Get percentiles and calculate 1d binning
        binning = get_1d_binning("et", chain, variables, min_percentile,
                                 max_percentile, num_borders)

        # Add binning for unrolled 2d distributions
        binning = add_2d_unrolled_binning(variables, binning)

        # Append binning to config
        config["gof"]["et"] = binning

    # Channel: MT
    if "mt" in channels:
        # Get properties
        channel = MTSM()
        logger.info("Channel: mt")
        dict_ = {}
        additional_cuts = Cuts()
        logger.warning("Use additional cuts for mt: %s",
                       additional_cuts.expand())
        dict_ = get_properties(dict_, era, channel, args.directory,
                               additional_cuts)

        # Build chain
        dict_["tree_path"] = "mt_nominal/ntuple"
        chain = build_chain(dict_)

        # Get percentiles
        binning = get_1d_binning("mt", chain, variables, min_percentile,
                                 max_percentile, num_borders)

        # Add binning for unrolled 2d distributions
        binning = add_2d_unrolled_binning(variables, binning)

        # Append binning to config
        config["gof"]["mt"] = binning

    # Channel: TT
    if "tt" in channels:
        # Get properties
        channel = TTSM()
        logger.info("Channel: tt")
        dict_ = {}
        additional_cuts = Cuts()
        logger.warning("Use additional cuts for tt: %s",
                       additional_cuts.expand())
        dict_ = get_properties(dict_, era, channel, args.directory,
                               additional_cuts)

        # Build chain
        dict_["tree_path"] = "tt_nominal/ntuple"
        chain = build_chain(dict_)

        # Get percentiles
        binning = get_1d_binning("tt", chain, variables, min_percentile,
                                 max_percentile, num_borders)

        # Add binning for unrolled 2d distributions
        binning = add_2d_unrolled_binning(variables, binning)

        # Append binning to config
        config["gof"]["tt"] = binning

    # Write config
    logger.info("Write binning config to %s.", args.output)
    yaml.dump(config, open(args.output, 'w'))