Пример #1
0
class ProjectFlood(object):

    proj_dir = "c:/data/projects/"
    shape_countries = "c:/data/input_data/gaul_2014_2008_2/gaul_wfp.shp"
    pop_distr = "c:/data/input_data/population/popmap10.tif"
    driver = ogr.GetDriverByName("ESRI Shapefile")
    shapefile = driver.Open(shape_countries)
    layer = shapefile.GetLayer()
    historical_table = "c:/data/input_data/historical_data/floods - refine.csv"

    def __init__(self, paese, admin):
        self.paese = paese
        self.admin = admin
        self.dirOut = HazardAssessment.proj_dir + paese + "/" + admin + "/out/"
Пример #2
0
def load_shapefile(src_path, pg_host, pg_db, pg_user, pg_pwd):

    connection = psycopg2.connect(host=pg_host,
                                  database=pg_db,
                                  user=pg_user,
                                  password=pg_pwd)
    cursor = connection.cursor()

    ddl = """
    DROP TABLE IF EXISTS public.borders;
    
    CREATE TABLE public.borders 
    (
        id          SERIAL      NOT NULL
            PRIMARY KEY,
        name        VARCHAR     NOT NULL,
        iso_code    VARCHAR     NOT NULL,
        outline     GEOGRAPHY   NOT NULL
    );
    
    CREATE INDEX border_index 
        ON public.borders 
    USING GIST(outline);
    """

    dml = """
        INSERT INTO public.borders (name, iso_code, outline) 
        VALUES (%s, %s, ST_GeogFromText(%s))
    """

    cursor.execute(ddl)
    connection.commit()

    shapefile = ogr.Open(src_path)
    layer = shapefile.GetLayer(0)

    for i in range(layer.GetFeatureCount()):
        feature = layer.GetFeature(i)
        name = feature.GetField("NAME")
        iso_code = feature.GetField("ISO3")
        geometry = feature.GetGeometryRef()
        wkt = geometry.ExportToWkt()

        cursor.execute(dml, (name, iso_code, wkt))

    connection.commit()
Пример #3
0
def field_exists(field_name, shp_path):
    """
    This function returns whether the specified field exists or not in the shapefile linked by a path.

    :param field_name: Name of the field to be checked for.
    :type field_name: str
    :param shp_path: Path to the shapefile.
    :type shp_path: str

    :return: ``True`` if it exists or ``False`` if it doesn't exist.
    :rtype: bool
    """
    shp = ogr.Open(shp_path, 0)
    lyr = shp.GetLayer()
    lyr_dfn = lyr.GetLayerDefn()

    exists = False
    for i in range(lyr_dfn.GetFieldCount()):
        exists = exists or (field_name == lyr_dfn.GetFieldDefn(i).GetName())
    return exists
def catchment_slice(X, catchment_filenames):
    """Slice the output array in x- and y-direction in order to only save the 
    extent of one or multiple catchments. Currently, this tool only works for
    the KNMI radar datasets.
    
    Parameters
    -------------
    X : 3D-array, which is the output of the steps.py ensemble nowcast per time
        step.The array consists of:
            1. n ensemble members
            2. n rows
            3. n cols
    
    catchment_filenames: A list with the location (directory + filename) of 
        catchment shapefiles. The shapefiles will be used and rasterized in a
        loop.
        
    metadata: The metadata of the input radar images.
        
    Returns
    -------------
    array_out: 4D-array, though similar to the input, but with sliced rows and cols. 
        Hence, this array consists of:
            1. n catchments
            2. n ensemble members
            3. n rows (sliced)
            4. n cols (sliced)
            
    metadata_out: The metadata, conform the input metadata, but for the sliced
        arrays. The output is an array consisting of n metadata-files.
    """

    ##########
    # Initial settings
    ##########

    # Set the info from the NL_RAD data
    xmin_nlrad = 0
    xmax_nlrad = 700
    ymin_nlrad = -4415
    ymax_nlrad = -3650

    ###########
    # Loop to rasterize the shapefile and then slice the radar array with the
    # extent of the rasterized shapefile.
    ###########

    # This is going to be the output
    array_out = []

    for i in range(0, len(catchment_filenames)):
        #########################################################
        # Time to read the shapefile
        #########################################################
        filename = catchment_filenames[i]

        # set file names in order to obtain the reprojected shapefile, which
        # was made with the catchment_medata functionality.
        dirname = os.path.dirname(filename)
        basename = os.path.basename(filename)
        basenametxt = os.path.splitext(basename)[0]
        outfile = os.path.join(dirname, basenametxt + '_Reprojected.shp')

        #########################################################
        # Define the new, reprojected shapefile as sfnew
        # We are going to rasterize this shapefile, since the resulting radar raster (after
        # rasterizing the hdf5-dataset) should be exactly the same as this raster of this shapefile
        #########################################################

        #        sfnew = shapefile.Reader(outfile)

        # 1. Define pixel_size and NoData value of new raster
        NoData_value = -9999

        # 2. Open Shapefile
        driver = ogr.GetDriverByName('ESRI Shapefile')
        shapefile = driver.Open(outfile)
        source_layer = shapefile.GetLayer()
        # Obtain xmin, xmax, ymin and ymax as floats
        x_min, x_max, y_min, y_max = source_layer.GetExtent()

        # 3. Round the values for xmin, xmax, ymin and ymax (make a rough rounding)
        # in order to not get a too small extent. Finally, make integer values of it.
        xmin = int(round(x_min, 0) - 1)
        xmax = int(round(x_max, 0) + 1)
        ymin = int(round(y_min, 0) - 1)
        ymax = int(round(y_max, 0) + 1)

        # 4. Slice the array with the known coordinates - which equal the col and row number!
        xslice_min = xmin
        xslice_max = xmax
        yslice_max = (ymin - ymax_nlrad
                      ) * -1  # + 3650 in order to compensate for the 3650
        yslice_min = (
            ymax - ymax_nlrad
        ) * -1  # ymin and ymax are flipped, because the indexation is flipped as well

        array_new = X[:, yslice_min:yslice_max, xslice_min:xslice_max]
        array_out.append(array_new)

        array_new = None
        xmin = None
        xmax = None
        ymin = None
        ymax = None
        xslice_min = None
        xslice_max = None
        yslice_min = None
        yslice_max = None

    return array_out
def catchment_metadata(catchment_filenames, metadata):
    """Obtain new metadata files per given catchment shapefile. 
    Currently, this tool only works for the KNMI radar datasets.
    
    Parameters
    -------------
    
    catchment_filenames: A list with the location (directory + filename) of 
        catchment shapefiles. The shapefiles will be used and rasterized in a
        loop.
        
    metadata: The metadata of the input radar images.
        
    Returns
    -------------
            
    metadata_out: The metadata, conform the input metadata, but for the sliced
        arrays. The output is an array consisting of n metadata-files.
    """

    ##########
    # Initial settings
    ##########

    # Set the info from the NL_RAD data
    xmin_nlrad = 0
    xmax_nlrad = 700
    ymin_nlrad = -4415
    ymax_nlrad = -3650

    ###########
    # Loop to rasterize the shapefile and then slice the radar array with the
    # extent of the rasterized shapefile.
    ###########

    # This is going to be the output
    metadata_out = []

    for i in range(0, len(catchment_filenames)):
        #########################################################
        # Time to read the shapefile
        #########################################################
        filename = catchment_filenames[i]
        #        sf = shapefile.Reader(filename)

        #########################################################
        # Get the projection of the shapefiles
        ##########################################################

        driver = ogr.GetDriverByName('ESRI Shapefile')
        dataset = driver.Open(filename)

        # from Layer
        layer = dataset.GetLayer()
        spatialRef = layer.GetSpatialRef()
        # from Geometry
        feature = layer.GetNextFeature()
        geom = feature.GetGeometryRef()
        spatialRef = geom.GetSpatialReference()

        #        print("The spatial projection is: %s" %spatialRef)

        #########################################################
        # Reproject the geometry of the shapefile
        #########################################################

        # set file names
        infile = filename
        dirname = os.path.dirname(filename)
        basename = os.path.basename(filename)
        basenametxt = os.path.splitext(basename)[0]
        outfile = os.path.join(dirname, basenametxt + '_Reprojected.shp')

        # The projection will be based on the projection of the given data set

        ShapefileProj = '+proj=stere +lat_0=90 +lon_0=0.0 +lat_ts=60.0 +a=6378.137 +b=6356.752 +x_0=0 +y_0=0'

        subprocess.call(['ogr2ogr', '-t_srs', ShapefileProj, outfile, infile])

        #########################################################
        # Define the new, reprojected shapefile as sfnew
        # We are going to 'rasterize' this shapefile, since the resulting radar raster (after
        # rasterizing the hdf5-dataset) should be exactly the same as this raster of this shapefile
        #########################################################

        #        sfnew = shapefile.Reader(outfile)

        # 1. Define pixel_size and NoData value of new raster
        NoData_value = -9999

        # 2. Open Shapefile
        driver = ogr.GetDriverByName('ESRI Shapefile')
        shapefile = driver.Open(outfile)
        source_layer = shapefile.GetLayer()
        # Obtain xmin, xmax, ymin and ymax as floats
        x_min, x_max, y_min, y_max = source_layer.GetExtent()

        # 3. Round the values for xmin, xmax, ymin and ymax (make a rough rounding)
        # in order to not get a too small extent. Finally, make integer values of it.
        xmin = int(round(x_min, 0) - 1)
        xmax = int(round(x_max, 0) + 1)
        ymin = int(round(y_min, 0) - 1)
        ymax = int(round(y_max, 0) + 1)

        x_res = 1
        y_res = 1

        cols = int((xmax - xmin) / x_res)
        rows = int((ymax - ymin) / y_res)

        # 4. Fill in the new metadata
        metadata_new = metadata.copy()
        metadata_new["shape"] = (rows, cols)
        metadata_new["x1"] = xmin
        metadata_new["x2"] = xmax
        metadata_new["y1"] = ymax
        metadata_new["y2"] = ymin

        metadata_out.append(metadata_new)

        xmin = None
        xmax = None
        ymin = None
        ymax = None

    return metadata_out
def catchment_slice_mpi(X, catchment_shapes):
    """Slice the output array in x- and y-direction in order to only save the 
    extent of one or multiple catchments. Currently, this tool only works for
    the KNMI radar datasets.
    
    Parameters
    -------------
    X : 3D-array, which is the output of the steps.py ensemble nowcast per time
        step.The array consists of:
            1. n ensemble members
            2. n rows
            3. n cols
    
    catchment_shapes: A list with already opened shapefiles of the catchments. 
        The shapefiles will be used to get the extent of the radar image. Note
        that the shapefiles have to be reprojected in advance (this in contrast
        to the original serial catchment_slice.py script!).
        
    metadata: The metadata of the input radar images.
        
    Returns
    -------------
    array_out: 4D-array, though similar to the input, but with sliced rows and cols. 
        Hence, this array consists of:
            1. n catchments
            2. n ensemble members
            3. n rows (sliced)
            4. n cols (sliced)
            
    metadata_out: The metadata, conform the input metadata, but for the sliced
        arrays. The output is an array consisting of n metadata-files.
    """

    ##########
    # Initial settings
    ##########

    # Set the info from the NL_RAD data
    xmin_nlrad = 0
    xmax_nlrad = 700
    ymin_nlrad = -4415
    ymax_nlrad = -3650

    ###########
    # Loop to rasterize the shapefile and then slice the radar array with the
    # extent of the rasterized shapefile.
    ###########

    # This is going to be the output
    array_out = []

    for i in range(0, len(catchment_shapes)):
        # 1. Define pixel_size and NoData value of new raster
        NoData_value = -9999

        # 2. Get the shapefile
        #        driver = ogr.GetDriverByName('ESRI Shapefile')
        shapefile = catchment_shapes[i]
        source_layer = shapefile.GetLayer()
        # Obtain xmin, xmax, ymin and ymax as floats
        x_min, x_max, y_min, y_max = source_layer.GetExtent()

        # 3. Round the values for xmin, xmax, ymin and ymax (make a rough rounding)
        # in order to not get a too small extent. Finally, make integer values of it.
        xmin = int(round(x_min, 0) - 1)
        xmax = int(round(x_max, 0) + 1)
        ymin = int(round(y_min, 0) - 1)
        ymax = int(round(y_max, 0) + 1)

        # 4. Slice the array with the known coordinates - which equal the col and row number!
        xslice_min = xmin
        xslice_max = xmax
        yslice_max = (ymin - ymax_nlrad
                      ) * -1  # + 3650 in order to compensate for the 3650
        yslice_min = (
            ymax - ymax_nlrad
        ) * -1  # ymin and ymax are flipped, because the indexation is flipped as well

        array_new = X[:, yslice_min:yslice_max, xslice_min:xslice_max]
        array_out.append(array_new)

        array_new = None
        xmin = None
        xmax = None
        ymin = None
        ymax = None
        xslice_min = None
        xslice_max = None
        yslice_min = None
        yslice_max = None

    return array_out
def catchment_metadata_mpi(catchment_shapes, metadata):
    """Obtain new metadata files per given catchment shapefile. 
    Currently, this tool only works for the KNMI radar datasets.
    
    Parameters
    -------------
    
    catchment_filenames: A list with the location (directory + filename) of 
        catchment shapefiles. The shapefiles will be used and rasterized in a
        loop.
        
    metadata: The metadata of the input radar images.
        
    Returns
    -------------
            
    metadata_out: The metadata, conform the input metadata, but for the sliced
        arrays. The output is an array consisting of n metadata-files.
    """

    ##########
    # Initial settings
    ##########

    # Set the info from the NL_RAD data
    xmin_nlrad = 0
    xmax_nlrad = 700
    ymin_nlrad = -4415
    ymax_nlrad = -3650

    ###########
    # Loop to rasterize the shapefile and then slice the radar array with the
    # extent of the rasterized shapefile.
    ###########

    # This is going to be the output
    metadata_out = []

    for i in range(0, len(catchment_shapes)):
        shapefile = catchment_shapes[i]
        source_layer = shapefile.GetLayer()
        # Obtain xmin, xmax, ymin and ymax as floats
        x_min, x_max, y_min, y_max = source_layer.GetExtent()

        # 3. Round the values for xmin, xmax, ymin and ymax (make a rough rounding)
        # in order to not get a too small extent. Finally, make integer values of it.
        xmin = int(round(x_min, 0) - 1)
        xmax = int(round(x_max, 0) + 1)
        ymin = int(round(y_min, 0) - 1)
        ymax = int(round(y_max, 0) + 1)

        x_res = 1
        y_res = 1

        cols = int((xmax - xmin) / x_res)
        rows = int((ymax - ymin) / y_res)

        # 4. Fill in the new metadata
        metadata_new = metadata.copy()
        metadata_new["shape"] = (rows, cols)
        metadata_new["x1"] = xmin
        metadata_new["x2"] = xmax
        metadata_new["y1"] = ymax
        metadata_new["y2"] = ymin

        metadata_out.append(metadata_new)

        xmin = None
        xmax = None
        ymin = None
        ymax = None

    return metadata_out
Пример #8
0
class UtilitieSparc(object):

    proj_dir = os.getcwd() + "/projects/"
    driver = ogr.GetDriverByName("ESRI Shapefile")
    #DA MAIN
    shape_countries = "input_data/gaul/gaul_wfp_iso.shp"

    campo_nome_paese = "ADM0_NAME"
    campo_iso_paese = "ADM0_CODE"
    campo_nome_admin = "ADM2_NAME"
    campo_iso_admin = "ADM2_CODE"
    shapefile = driver.Open(shape_countries)
    layer = shapefile.GetLayer()

    nome_paese = ""
    cod_paese = ""

    def __init__(self, paese, admin):

        self.dati_per_plot = {}
        self.dati_per_prob = {}

        self.paese = paese
        self.admin = admin
        self.dirOut = UtilitieSparc.proj_dir + paese + "/" + admin + "/"

    def lista_admin0(self):

        numFeatures = self.layer.GetFeatureCount()
        lista_stati = []
        lista_iso = []
        for featureNum in range(numFeatures):
            feature = self.layer.GetFeature(featureNum)
            nome_paese = feature.GetField(self.campo_nome_paese)
            code_paese = feature.GetField(self.campo_iso_paese)
            lista_stati.append(nome_paese)
            lista_iso.append(code_paese)

        seen = set()
        seen_add = seen.add
        lista_pulita = [
            x for x in lista_stati if not (x in seen or seen_add(x))
        ]
        lista_admin0 = sorted(lista_pulita)
        return tuple(lista_admin0)

    def lista_admin2(self, country):

        country_capitalized = country.capitalize()

        self.layer.SetAttributeFilter(self.campo_nome_paese + " = '" +
                                      country_capitalized + "'")

        listone = {}
        lista_iso = []
        lista_clean = []
        lista_admin2 = []

        for feature in self.layer:
            cod_admin = feature.GetField(self.campo_iso_admin)
            nome_zozzo = feature.GetField(self.campo_nome_admin)

            unicode_zozzo = nome_zozzo.decode('utf-8')
            nome_per_combo = unicodedata.normalize('NFKD', unicode_zozzo)

            no_dash = re.sub('-', '_', nome_zozzo)
            no_space = re.sub(' ', '', no_dash)
            no_slash = re.sub('/', '_', no_space)
            no_apice = re.sub('\'', '', no_slash)
            no_bad_char = re.sub(r'-/\([^)]*\)', '', no_apice)
            unicode_pulito = no_bad_char.decode('utf-8')
            nome_pulito = unicodedata.normalize('NFKD', unicode_pulito).encode(
                'ascii', 'ignore')

            lista_iso.append(cod_admin)
            lista_clean.append(nome_pulito)
            lista_admin2.append(nome_per_combo)

        for i in range(len(lista_iso)):
            listone[lista_iso[i]] = {
                'name_orig': lista_admin2[i],
                'name_clean': lista_clean[i]
            }

        return lista_admin2, listone

    def creazione_struttura(self, admin_global):

        # Check in data structures exists and in case not create the directory named
        # after the country and all the directories
        UtilitieSparc.proj_dir
        os.chdir(UtilitieSparc.proj_dir)
        country_low = str(self.paese).lower()
        if os.path.exists(country_low):
            os.chdir(UtilitieSparc.proj_dir + country_low)
            admin_low = str(self.admin).lower()
            if os.path.exists(admin_low):
                pass
            else:
                os.mkdir(admin_low)
        else:
            os.chdir(UtilitieSparc.proj_dir)
            os.mkdir(country_low)
            os.chdir(UtilitieSparc.proj_dir + country_low)
            admin_low = str(self.admin).lower()
            if os.path.exists(admin_low):
                pass
            else:
                os.mkdir(admin_low)

        return "Project created......\n"

    def create_template(self, dir_template):
        os.chdir(dir_template)
        tabella = dbf.Table('monthly_values', 'month C(10);mean N(5,1)')
        return tabella.filename