Пример #1
0
def chi2nmaxFunc(params,im,nm,betaY,betaX,phi,xc):
    """
    params = [nmaxX,nmaxY]
        nmax: number of coefficents to use in x,y
    im: observed image
    nm: noise map
    betaY: characteristic size of shapelet
    betaX: characteristic size of shapelet
    phi: rotation angle of shapelets
    xc: fit centroid position
    """
    nmax=params
    size=im.shape
    #shift the (0,0) point to the centroid
    ry=np.array(range(0,size[0]),dtype=float)-xc[0]
    rx=np.array(range(0,size[1]),dtype=float)-xc[1]
    yy,xx=shapelet.xy2Grid(ry,rx)

    bvals=genBasisMatrix([betaY,betaX],[nmax,nmax],phi,yy,xx)
    coeffs=solveCoeffs(bvals,im)
    mdl=img.constructModel(bvals,coeffs,size)
    return np.sum((im-mdl)**2 / nm**2)/(size[0]*size[1])
Пример #2
0
def chi2nmaxFunc(params, im, nm, betaY, betaX, phi, xc):
    """
    params = [nmaxX,nmaxY]
        nmax: number of coefficents to use in x,y
    im: observed image
    nm: noise map
    betaY: characteristic size of shapelet
    betaX: characteristic size of shapelet
    phi: rotation angle of shapelets
    xc: fit centroid position
    """
    nmax = params
    size = im.shape
    #shift the (0,0) point to the centroid
    ry = np.array(range(0, size[0]), dtype=float) - xc[0]
    rx = np.array(range(0, size[1]), dtype=float) - xc[1]
    yy, xx = shapelet.xy2Grid(ry, rx)

    bvals = genBasisMatrix([betaY, betaX], [nmax, nmax], phi, yy, xx)
    coeffs = solveCoeffs(bvals, im)
    mdl = img.constructModel(bvals, coeffs, size)
    return np.sum((im - mdl)**2 / nm**2) / (size[0] * size[1])
Пример #3
0
def chi2Func(params,nmax,im,nm,order=['beta0','beta1','phi','yc','xc'],set_beta=[None,None],set_phi=None,set_xc=[None,None],xx=None,yy=None):
    """Function which is to be minimized in the chi^2 analysis for Cartesian shapelets
    params = [beta0, beta1, phi, xc, yc] or some subset
        beta0: characteristic size of shapelets, fit parameter
        beta1: characteristic size of shapelets, fit parameter
        phi: rotation angle of shapelets, fit parameter
        yc: y centroid of shapelets, fit parameter
        xc: x centroid of shapelets, fit parameter
    nmax: number of coefficents to use in the Hermite polynomials
    im: observed image
    nm: noise map
    order: order of parameters
    fixed parameters: set_beta, set_phi, set_xc
    xx: X position grid, array of im.shape, not required if xc and yc being fit
    yy: Y position grid, array of im.shape, not required if xc and yc being fit
    """
    #determine which parameters are being fit for, and which are not
    betaY=set_beta[0]
    betaX=set_beta[1]
    phi=set_phi
    yc=set_xc[0]
    xc=set_xc[1]
    fitParams={'beta':False,'phi':False,'xc':False}
    for pid,paramName in enumerate(order):
        if paramName=='beta0':
            betaY=params[pid]
            fitParams['beta']=True
        elif paramName=='beta1':
            betaX=params[pid]
            fitParams['beta']=True
        elif paramName=='phi':
            phi=params[pid]
            fitParams['phi']=True
        elif paramName=='xc':
            xc=params[pid]
            fitParams['xc']=True
        elif paramName=='yc':   
            yc=params[pid]
            fitParams['xc']=True

    #if betaX<0.:
    #    print 'warning: beta going negative, setting to 0.0'
    #    betaX=0.
    #if betaY<0.:
    #    print 'warning: beta going negative, setting to 0.0'
    #    betaY=0.
    if betaX<0.:
        print 'warning: beta going negative, taking absolute value'
        betaX = np.abs(betaY)
    if betaY<0.:
        print 'warning: beta going negative, taking absolute value'
        betaY = np.abs(betaX)
    print 'beta: (%f,%f)\t phi: %f\txc: (%f,%f)'%(betaX,betaY,phi,xc,yc)

    #update noise map
    nm=img.makeNoiseMap(nm.shape,np.mean(nm),np.std(nm))

    size=im.shape
    if fitParams['xc'] or xx is None:
        #shift the (0,0) point to the centroid
        ry=np.array(range(0,size[0]),dtype=float)-yc
        rx=np.array(range(0,size[1]),dtype=float)-xc
        yy,xx=shapelet.xy2Grid(ry,rx)
    bvals=genBasisMatrix([betaY,betaX],nmax,phi,yy,xx)
    coeffs=solveCoeffs(bvals,im)
    mdl=img.constructModel(bvals,coeffs,size)
    return np.sum((im-mdl)**2 / nm**2)/(size[0]*size[1])
Пример #4
0
        coeffs=solveCoeffs(mPolar,subim)
        print coeffs
        if write_files: fileio.writeLageurreCoeffs('testLageurre.pkl',coeffs,xc,subim.shape,beta0,0.,[5,5],pos=[hdr['ra'],hdr['dec'],hdr['dra'],hdr['ddec']],info='Test Lageurre coeff file')
    except:
        print 'Test failed (%i):'%tc, sys.exc_info()[0]
        te+=1

    #genBasisMatrix(beta,nmax,rx,ry):
    #solveCoeffs(m,im):
    tc+=1
    try:
        beta0,phi0=initBetaPhi(subim,mode='fit')
        xc=img.maxPos(subim)
        rx=np.array(range(0,subim.shape[0]),dtype=float)-xc[0]
        ry=np.array(range(0,subim.shape[1]),dtype=float)-xc[1]
        xx,yy=shapelet.xy2Grid(rx,ry)
        mCart=genBasisMatrix(beta0,[5,5],phi0,xx,yy)
        coeffs=solveCoeffs(mCart,subim)
        print coeffs
        if write_files: fileio.writeHermiteCoeffs('testHermite.pkl',coeffs,xc,subim.shape,beta0,0.,5,pos=[hdr['ra'],hdr['dec'],hdr['dra'],hdr['ddec']],info='Test Hermite coeff file')
    except:
        print 'Test failed (%i):'%tc, sys.exc_info()[0]
        te+=1

    beta0,phi0=initBetaPhi(subim,mode='fit')
    xc=img.maxPos(subim)
    mean,std=img.estimateNoise(subim,mode='basic')
    nm=img.makeNoiseMap(subim.shape,mean,std)
    nmax=[10,10]

    #chi2PolarFunc(params,nmax,im,nm):
Пример #5
0
        mean, std = estimateNoise(im, mode='basic')
        nm = makeNoiseMap(im.shape, mean, std)
        print nm.shape
    except:
        print 'Test failed (%i):' % tc, sys.exc_info()[0]
        te += 1

    #constructModel(bvals,coeffs,size):
    tc += 1
    try:
        shapeDict = fileio.readLageurreCoeffs('../data/testHermite.pkl')
        rx = np.array(range(0, shapeDict['size'][0]),
                      dtype=float) - shapeDict['xc'][0]
        ry = np.array(range(0, shapeDict['size'][1]),
                      dtype=float) - shapeDict['xc'][1]
        xx, yy = shapelet.xy2Grid(rx, ry)
        bvals = decomp.genBasisMatrix(shapeDict['beta'], shapeDict['norder'],
                                      shapeDict['phi'], xx, yy)
        mdl = constructModel(bvals, shapeDict['coeffs'], shapeDict['size'])
        print mdl.shape
    except:
        print 'Test failed (%i):' % tc, sys.exc_info()[0]
        te += 1

    #polarCoeffImg(coeffs,nmax):
    tc += 1
    try:
        shapeDict = fileio.readLageurreCoeffs('../data/testLageurre.pkl')
        cim = polarCoeffImg(shapeDict['coeffs'].real, shapeDict['norder'])
        print cim
    except:
Пример #6
0
def chi2Func(params,
             nmax,
             im,
             nm,
             order=['beta0', 'beta1', 'phi', 'yc', 'xc'],
             set_beta=[None, None],
             set_phi=None,
             set_xc=[None, None],
             xx=None,
             yy=None):
    """Function which is to be minimized in the chi^2 analysis for Cartesian shapelets
    params = [beta0, beta1, phi, xc, yc] or some subset
        beta0: characteristic size of shapelets, fit parameter
        beta1: characteristic size of shapelets, fit parameter
        phi: rotation angle of shapelets, fit parameter
        yc: y centroid of shapelets, fit parameter
        xc: x centroid of shapelets, fit parameter
    nmax: number of coefficents to use in the Hermite polynomials
    im: observed image
    nm: noise map
    order: order of parameters
    fixed parameters: set_beta, set_phi, set_xc
    xx: X position grid, array of im.shape, not required if xc and yc being fit
    yy: Y position grid, array of im.shape, not required if xc and yc being fit
    """
    #determine which parameters are being fit for, and which are not
    betaY = set_beta[0]
    betaX = set_beta[1]
    phi = set_phi
    yc = set_xc[0]
    xc = set_xc[1]
    fitParams = {'beta': False, 'phi': False, 'xc': False}
    for pid, paramName in enumerate(order):
        if paramName == 'beta0':
            betaY = params[pid]
            fitParams['beta'] = True
        elif paramName == 'beta1':
            betaX = params[pid]
            fitParams['beta'] = True
        elif paramName == 'phi':
            phi = params[pid]
            fitParams['phi'] = True
        elif paramName == 'xc':
            xc = params[pid]
            fitParams['xc'] = True
        elif paramName == 'yc':
            yc = params[pid]
            fitParams['xc'] = True

    #if betaX<0.:
    #    print 'warning: beta going negative, setting to 0.0'
    #    betaX=0.
    #if betaY<0.:
    #    print 'warning: beta going negative, setting to 0.0'
    #    betaY=0.
    if betaX < 0.:
        print 'warning: beta going negative, taking absolute value'
        betaX = np.abs(betaY)
    if betaY < 0.:
        print 'warning: beta going negative, taking absolute value'
        betaY = np.abs(betaX)
    print 'beta: (%f,%f)\t phi: %f\txc: (%f,%f)' % (betaX, betaY, phi, xc, yc)

    #update noise map
    nm = img.makeNoiseMap(nm.shape, np.mean(nm), np.std(nm))

    size = im.shape
    if fitParams['xc'] or xx is None:
        #shift the (0,0) point to the centroid
        ry = np.array(range(0, size[0]), dtype=float) - yc
        rx = np.array(range(0, size[1]), dtype=float) - xc
        yy, xx = shapelet.xy2Grid(ry, rx)
    bvals = genBasisMatrix([betaY, betaX], nmax, phi, yy, xx)
    coeffs = solveCoeffs(bvals, im)
    mdl = img.constructModel(bvals, coeffs, size)
    return np.sum((im - mdl)**2 / nm**2) / (size[0] * size[1])