Пример #1
0
def _assert_nan_coords_same(x, y, tolerance, err_msg, verbose):
    x, y = np.broadcast_arrays(x, y)
    x_coords = shapely.get_coordinates(x, include_z=True)
    y_coords = shapely.get_coordinates(y, include_z=True)

    # Check the shapes (condition is copied from numpy test_array_equal)
    if x_coords.shape != y_coords.shape:
        return False

    # Check NaN positional equality
    x_id = np.isnan(x_coords)
    y_id = np.isnan(y_coords)
    if not (x_id == y_id).all():
        msg = build_err_msg(
            [x, y],
            err_msg + "\nx and y nan coordinate location mismatch:",
            verbose=verbose,
        )
        raise AssertionError(msg)

    # If this passed, replace NaN with a number to be able to use equals_exact
    x_no_nan = shapely.apply(x, _replace_nan, include_z=True)
    y_no_nan = shapely.apply(y, _replace_nan, include_z=True)

    return _equals_exact_with_ndim(x_no_nan, y_no_nan, tolerance=tolerance)
Пример #2
0
def test_apply_0dim():
    # a geometry input returns a geometry
    actual = apply(point, lambda x: x + 1)
    assert isinstance(actual, shapely.Geometry)
    # a 0-dim array input returns a 0-dim array
    actual = apply(np.asarray(point), lambda x: x + 1)
    assert isinstance(actual, np.ndarray)
    assert actual.ndim == 0
Пример #3
0
def test_apply(geoms, include_z):
    geoms = np.array(geoms, np.object_)
    coordinates_before = get_coordinates(geoms, include_z=include_z)
    new_geoms = apply(geoms, lambda x: x + 1, include_z=include_z)
    assert new_geoms is not geoms
    coordinates_after = get_coordinates(new_geoms, include_z=include_z)
    assert_allclose(coordinates_before + 1, coordinates_after, equal_nan=True)
Пример #4
0
def _prepare_input(geometry, prepare):
    """Prepare without modifying inplace"""
    if prepare:
        geometry = shapely.apply(geometry, lambda x: x)  # makes a copy
        shapely.prepare(geometry)
        return geometry
    else:
        return geometry
Пример #5
0
def _prepare_with_copy(geometry):
    """Prepare without modifying inplace"""
    geometry = shapely.apply(geometry, lambda x: x)  # makes a copy
    shapely.prepare(geometry)
    return geometry
Пример #6
0
def test_apply_remove_z(geom):
    assert shapely.get_coordinate_dimension(geom) == 3
    new_geom = apply(geom, lambda x: x + 1, include_z=False)
    assert shapely.get_coordinate_dimension(new_geom) == 2
Пример #7
0
def test_apply_empty_preserve_z(geom):
    assert shapely.get_coordinate_dimension(geom) == 3
    new_geom = apply(geom, lambda x: x + 1, include_z=True)
    assert shapely.get_coordinate_dimension(new_geom) == 3
Пример #8
0
def test_apply_correct_coordinate_dimension():
    # ensure that new geometry is 2D with include_z=False
    geom = line_string_z
    assert shapely.get_coordinate_dimension(geom) == 3
    new_geom = apply(geom, lambda x: x + 1, include_z=False)
    assert shapely.get_coordinate_dimension(new_geom) == 2
Пример #9
0
def test_apply_check_shape():
    def remove_coord(arr):
        return arr[:-1]

    with pytest.raises(ValueError):
        apply(linear_ring, remove_coord)
Пример #10
0
def affine_transform(geom, matrix):
    r"""Returns a transformed geometry using an affine transformation matrix.

    The coefficient matrix is provided as a list or tuple with 6 or 12 items
    for 2D or 3D transformations, respectively.

    For 2D affine transformations, the 6 parameter matrix is::

        [a, b, d, e, xoff, yoff]

    which represents the augmented matrix::

        [x']   / a  b xoff \ [x]
        [y'] = | d  e yoff | [y]
        [1 ]   \ 0  0   1  / [1]

    or the equations for the transformed coordinates::

        x' = a * x + b * y + xoff
        y' = d * x + e * y + yoff

    For 3D affine transformations, the 12 parameter matrix is::

        [a, b, c, d, e, f, g, h, i, xoff, yoff, zoff]

    which represents the augmented matrix::

        [x']   / a  b  c xoff \ [x]
        [y'] = | d  e  f yoff | [y]
        [z']   | g  h  i zoff | [z]
        [1 ]   \ 0  0  0   1  / [1]

    or the equations for the transformed coordinates::

        x' = a * x + b * y + c * z + xoff
        y' = d * x + e * y + f * z + yoff
        z' = g * x + h * y + i * z + zoff
    """
    if len(matrix) == 6:
        ndim = 2
        a, b, d, e, xoff, yoff = matrix
        if geom.has_z:
            ndim = 3
            i = 1.0
            c = f = g = h = zoff = 0.0
            matrix = a, b, c, d, e, f, g, h, i, xoff, yoff, zoff
    elif len(matrix) == 12:
        ndim = 3
        a, b, c, d, e, f, g, h, i, xoff, yoff, zoff = matrix
        if not geom.has_z:
            ndim = 2
            matrix = a, b, d, e, xoff, yoff
    else:
        raise ValueError("'matrix' expects either 6 or 12 coefficients")

    def _affine_coords(coords):
        """Internal function to yield affine transform of coordinate tuples"""
        x = coords[:, 0]
        y = coords[:, 1]

        if ndim == 2:
            xp = a * x + b * y + xoff
            yp = d * x + e * y + yoff
            return np.hstack((np.atleast_2d(xp).T, np.atleast_2d(yp).T))
        elif ndim == 3:
            z = coords[:, 2]
            xp = a * x + b * y + c * z + xoff
            yp = d * x + e * y + f * z + yoff
            zp = g * x + h * y + i * z + zoff
            return np.hstack(
                (np.atleast_2d(xp).T, np.atleast_2d(yp).T, np.atleast_2d(zp).T)
            )

    return shapely.apply(geom, _affine_coords, include_z=ndim == 3)
Пример #11
0
def test_set_unique(geom):
    a = {geom, shapely.apply(geom, lambda x: x)}
    assert len(a) == 1
Пример #12
0
def test_neq(geom):
    assert geom != shapely.apply(geom, lambda x: x + 1)
Пример #13
0
def test_eq(geom):
    assert geom == shapely.apply(geom, lambda x: x)
Пример #14
0
def test_hash_same_not_equal(geom):
    assert hash(geom) != hash(shapely.apply(geom, lambda x: x + 1))
Пример #15
0
def test_hash_same_equal(geom):
    assert hash(geom) == hash(shapely.apply(geom, lambda x: x))