Пример #1
0
def Run(args):
    basedir = os.path.dirname(__file__)

    callVarBamBin = basedir + "/../clair.py callVarBam"
    pypyBin = executable_command_string_from(args.pypy, exit_on_not_found=True)
    samtoolsBin = executable_command_string_from(args.samtools, exit_on_not_found=True)

    chkpnt_fn = file_path_from(args.chkpnt_fn, suffix=".meta", exit_on_not_found=True)
    bam_fn = file_path_from(args.bam_fn, exit_on_not_found=True)
    ref_fn = file_path_from(args.ref_fn, exit_on_not_found=True)
    fai_fn = file_path_from(args.ref_fn + ".fai", exit_on_not_found=True)
    bed_fn = file_path_from(args.bed_fn)
    vcf_fn = file_path_from(args.vcf_fn)

    output_prefix = args.output_prefix
    af_threshold = args.threshold

    tree = bed_tree_from(bed_file_path=bed_fn)

    minCoverage = args.minCoverage
    sampleName = args.sampleName
    delay = args.delay
    threads = args.tensorflowThreads
    qual = args.qual
    is_include_all_contigs = args.includingAllContigs
    region_chunk_size = args.refChunkSize

    stop_consider_left_edge = command_option_from(args.stop_consider_left_edge, 'stop_consider_left_edge')
    log_path = command_option_from(args.log_path, 'log_path', option_value=args.log_path)
    pysam_for_all_indel_bases = command_option_from(args.pysam_for_all_indel_bases, 'pysam_for_all_indel_bases')
    haploid_mode = command_option_from(args.haploid, 'haploid')
    output_for_ensemble = command_option_from(args.output_for_ensemble, 'output_for_ensemble')
    debug = command_option_from(args.debug, 'debug')
    qual = command_option_from(args.qual, 'qual', option_value=args.qual)
    fast_plotting = command_option_from(args.fast_plotting, 'fast_plotting')

    call_var_bam_command_options = [
        ExecuteCommand('python3', callVarBamBin),
        CommandOption('chkpnt_fn', chkpnt_fn),
        CommandOption('ref_fn', ref_fn),
        CommandOption('bam_fn', bam_fn),
        CommandOption('threshold', af_threshold),
        CommandOption('minCoverage', minCoverage),
        CommandOption('pypy', pypyBin),
        CommandOption('samtools', samtoolsBin),
        CommandOption('delay', delay),
        CommandOption('threads', threads),
        CommandOption('sampleName', sampleName),
        # optional command options
        CommandOption('vcf_fn', vcf_fn) if vcf_fn is not None else None,
        qual,
        stop_consider_left_edge,
        debug,
        pysam_for_all_indel_bases,
        haploid_mode,
        output_for_ensemble,
    ]

    activation_only_command_options = [
        CommandOptionWithNoValue('activation_only'),
        log_path,
        CommandOption('max_plot', args.max_plot),
        CommandOption('parallel_level', args.parallel_level),
        CommandOption('workers', args.workers),
        fast_plotting,
    ] if args.activation_only else []

    is_bed_file_provided = bed_fn is not None
    command_string = command_string_from(call_var_bam_command_options + activation_only_command_options)

    with open(fai_fn, 'r') as fai_fp:
        for row in fai_fp:
            columns = row.strip().split("\t")

            contig_name = columns[0]
            if not is_include_all_contigs and str(contig_name) not in major_contigs:
                continue

            region_start, region_end = 0, 0
            contig_length = int(columns[1])
            while region_end < contig_length:
                region_start = region_end
                region_end = region_start + region_chunk_size
                if region_end > contig_length:
                    region_end = contig_length
                output_fn = "%s.%s_%d_%d.vcf" % (output_prefix, contig_name, region_start, region_end)

                is_region_in_bed = is_bed_file_provided and is_region_in(tree, contig_name, region_start, region_end)
                need_output_command = not is_bed_file_provided or is_region_in_bed
                if not need_output_command:
                    continue

                additional_command_options = [
                    CommandOption('ctgName', contig_name),
                    CommandOption('ctgStart', region_start),
                    CommandOption('ctgEnd', region_end),
                    CommandOption('call_fn', output_fn),
                    CommandOption('bed_fn', bed_fn) if is_region_in_bed else None
                ]
                print(command_string + " " + command_string_from(additional_command_options))
Пример #2
0
def Run(args):
    basedir = dirname(__file__)
    EVCBin = basedir + "/../clair.py ExtractVariantCandidates"
    GTBin = basedir + "/../clair.py GetTruth"
    CTBin = basedir + "/../clair.py CreateTensor"
    CVBin = basedir + "/../clair.py call_var"

    pypyBin = executable_command_string_from(args.pypy, exit_on_not_found=True)
    samtoolsBin = executable_command_string_from(args.samtools,
                                                 exit_on_not_found=True)

    chkpnt_fn = file_path_from(args.chkpnt_fn,
                               suffix=".meta",
                               exit_on_not_found=True)
    bam_fn = file_path_from(args.bam_fn, exit_on_not_found=True)
    ref_fn = file_path_from(args.ref_fn, exit_on_not_found=True)
    vcf_fn = file_path_from(args.vcf_fn)
    bed_fn = file_path_from(args.bed_fn)

    dcov = args.dcov
    call_fn = args.call_fn
    af_threshold = args.threshold
    minCoverage = int(args.minCoverage)
    sampleName = args.sampleName
    ctgName = args.ctgName
    if ctgName is None:
        sys.exit(
            "--ctgName must be specified. You can call variants on multiple chromosomes simultaneously."
        )

    stop_consider_left_edge = command_option_from(args.stop_consider_left_edge,
                                                  'stop_consider_left_edge')
    log_path = command_option_from(args.log_path,
                                   'log_path',
                                   option_value=args.log_path)
    pysam_for_all_indel_bases = command_option_from(
        args.pysam_for_all_indel_bases, 'pysam_for_all_indel_bases')
    haploid_precision_mode = command_option_from(args.haploid_precision,
                                                 'haploid_precision')
    haploid_sensitive_mode = command_option_from(args.haploid_sensitive,
                                                 'haploid_sensitive')
    output_for_ensemble = command_option_from(args.output_for_ensemble,
                                              'output_for_ensemble')
    pipe_line = command_option_from(args.pipe_line, 'pipe_line')
    store_loaded_mini_match = command_option_from(args.store_loaded_mini_match,
                                                  'store_loaded_mini_match')
    only_prediction = command_option_from(args.only_prediction,
                                          'only_prediction')
    debug = command_option_from(args.debug, 'debug')
    qual = command_option_from(args.qual, 'qual', option_value=args.qual)
    fast_plotting = command_option_from(args.fast_plotting, 'fast_plotting')

    ctgStart = None
    ctgEnd = None
    if args.ctgStart is not None and args.ctgEnd is not None and int(
            args.ctgStart) <= int(args.ctgEnd):
        ctgStart = CommandOption('ctgStart', args.ctgStart)
        ctgEnd = CommandOption('ctgEnd', args.ctgEnd)

    if args.threads is None:
        numCpus = multiprocessing.cpu_count()
    else:
        numCpus = args.threads if args.threads < multiprocessing.cpu_count(
        ) else multiprocessing.cpu_count()

    maxCpus = multiprocessing.cpu_count()
    _cpuSet = ",".join(
        str(x) for x in random.sample(range(0, maxCpus), numCpus))

    taskSet = "taskset -c %s" % (_cpuSet)
    try:
        subprocess.check_output("which %s" % ("taskset"), shell=True)
    except:
        taskSet = ""

    if args.delay > 0:
        delay = random.randrange(0, args.delay)
        print("Delay %d seconds before starting variant calling ..." % (delay),
              file=sys.stderr)
        sleep(delay)

    extract_variant_candidate_command_options = [
        pypyBin, EVCBin,
        CommandOption('bam_fn', bam_fn),
        CommandOption('ref_fn', ref_fn),
        CommandOption('bed_fn', bed_fn),
        CommandOption('ctgName', ctgName), ctgStart, ctgEnd,
        CommandOption('threshold', af_threshold),
        CommandOption('minCoverage', minCoverage),
        CommandOption('samtools', samtoolsBin)
    ]
    get_truth_command_options = [
        pypyBin, GTBin,
        CommandOption('vcf_fn', vcf_fn),
        CommandOption('ref_fn', ref_fn),
        CommandOption('ctgName', ctgName), ctgStart, ctgEnd
    ]

    create_tensor_command_options = [
        pypyBin, CTBin,
        CommandOption('bam_fn', bam_fn),
        CommandOption('ref_fn', ref_fn),
        CommandOption('ctgName', ctgName), ctgStart, ctgEnd,
        stop_consider_left_edge,
        CommandOption('samtools', samtoolsBin),
        CommandOption('dcov', dcov)
    ]

    call_variant_command_options = [
        taskSet,
        ExecuteCommand('python', CVBin),
        CommandOption('chkpnt_fn', chkpnt_fn),
        CommandOption('call_fn', call_fn),
        CommandOption('bam_fn', bam_fn),
        CommandOption('sampleName', sampleName),
        CommandOption('time_counter_file_name', args.time_counter_file_name),
        CommandOption('threads', numCpus),
        CommandOption('ref_fn', ref_fn), pysam_for_all_indel_bases,
        haploid_precision_mode, haploid_sensitive_mode, output_for_ensemble,
        pipe_line, store_loaded_mini_match, only_prediction, qual, debug
    ]
    call_variant_with_activation_command_options = [
        CommandOptionWithNoValue('activation_only'),
        log_path,
        CommandOption('max_plot', args.max_plot),
        CommandOption('parallel_level', args.parallel_level),
        CommandOption('workers', args.workers),
        fast_plotting,
    ] if args.activation_only else []

    is_true_variant_call = vcf_fn is not None
    try:
        c.extract_variant_candidate = subprocess_popen(
            shlex.split(
                command_string_from(
                    get_truth_command_options if is_true_variant_call else
                    extract_variant_candidate_command_options)))

        c.create_tensor = subprocess_popen(
            shlex.split(command_string_from(create_tensor_command_options)),
            stdin=c.extract_variant_candidate.stdout)

        c.call_variant = subprocess_popen(shlex.split(
            command_string_from(call_variant_command_options +
                                call_variant_with_activation_command_options)),
                                          stdin=c.create_tensor.stdout,
                                          stdout=sys.stderr)
    except Exception as e:
        print(e, file=sys.stderr)
        sys.exit("Failed to start required processes. Exiting...")

    signal.signal(signal.SIGALRM, check_return_code)
    signal.alarm(2)

    try:
        c.call_variant.wait()
        c.create_tensor.stdout.close()
        c.create_tensor.wait()
        c.extract_variant_candidate.stdout.close()
        c.extract_variant_candidate.wait()
    except KeyboardInterrupt as e:
        print(
            "KeyboardInterrupt received when waiting at CallVarBam, terminating all scripts."
        )
        try:
            c.call_variant.terminate()
            c.create_tensor.terminate()
            c.extract_variant_candidate.terminate()
        except Exception as e:
            print(e)

        raise KeyboardInterrupt
    except Exception as e:
        print(
            "Exception received when waiting at CallVarBam, terminating all scripts."
        )
        print(e)
        try:
            c.call_variant.terminate()
            c.create_tensor.terminate()
            c.extract_variant_candidate.terminate()
        except Exception as e:
            print(e)

        raise e
Пример #3
0
def OutputVariant(args):
    var_fn = args.var_fn
    vcf_fn = args.vcf_fn
    ctg_name = args.ctgName
    ctg_start = args.ctgStart
    ctg_end = args.ctgEnd

    if args.var_fn != "PIPE":
        var_fpo = open(var_fn, "wb")
        var_fp = subprocess_popen(shlex.split("gzip -c"),
                                  stdin=PIPE,
                                  stdout=var_fpo)
    else:
        var_fp = TruthStdout(sys.stdout)

    is_ctg_region_provided = ctg_start is not None and ctg_end is not None
    if (is_ctg_region_provided
            and file_path_from("%s.tbi" % (vcf_fn)) is not None
            and executable_command_string_from("tabix") is not None):
        vcf_fp = subprocess_popen(
            shlex.split("tabix -f -p vcf %s %s:%s-%s" %
                        (vcf_fn, ctg_name, ctg_start, ctg_end)))
    else:
        vcf_fp = subprocess_popen(shlex.split("gzip -fdc %s" % (vcf_fn)))

    for row in vcf_fp.stdout:
        columns = row.strip().split()
        if columns[0][0] == "#":
            continue

        # position in vcf is 1-based
        chromosome, position = columns[0], columns[1]
        if chromosome != ctg_name:
            continue
        if is_ctg_region_provided and not (ctg_start <= int(position) <=
                                           ctg_end):
            continue
        reference, alternate, last_column = columns[3], columns[4], columns[-1]

        # normal GetTruth
        genotype = last_column.split(":")[0].replace("/", "|").replace(
            ".", "0").split("|")
        genotype_1, genotype_2 = genotype

        # 1000 Genome GetTruth (format problem) (no genotype is given)
        # genotype_1, genotype_2 = "1", "1"
        # if alternate.find(',') >= 0:
        #     genotype_1, genotype_2 = "1", "2"

        if int(genotype_1) > int(genotype_2):
            genotype_1, genotype_2 = genotype_2, genotype_1

        var_fp.stdin.write(" ".join((chromosome, position, reference,
                                     alternate, genotype_1, genotype_2)))
        var_fp.stdin.write("\n")

    vcf_fp.stdout.close()
    vcf_fp.wait()

    if args.var_fn != "PIPE":
        var_fp.stdin.close()
        var_fp.wait()
        var_fpo.close()
Пример #4
0
def Run(args):
    basedir = dirname(__file__)

    CTP_Bin = basedir + "/../clair3.py CreateTensorPileup"
    CTFA_Bin = basedir + "/../clair3.py CreateTensorFullAlignment"
    T2B_Bin = basedir + "/../clair3.py Tensor2Bin"

    if args.delay > 0:
        delay = random.randrange(0, args.delay)
        print("[INFO] Delay %d seconds before starting tensor creation ..." %
              (delay))
        sleep(delay)

    pypyBin = executable_command_string_from(args.pypy, exit_on_not_found=True)
    pythonBin = executable_command_string_from(args.python,
                                               exit_on_not_found=True)
    samtoolsBin = executable_command_string_from(args.samtools,
                                                 exit_on_not_found=True)

    if args.pileup:
        bam_fn = file_path_from(args.bam_fn, exit_on_not_found=True)
    else:
        bam_fn = file_path_from(args.bam_fn)
        if bam_fn is None or bam_fn == "":
            print(
                log_warning(
                    "[WARNING] Skip full-alignment variant calling for empty full-alignment regions"
                ))
            return
    ref_fn = file_path_from(args.ref_fn, exit_on_not_found=True)
    bed_fn = file_path_from(args.bed_fn)
    vcf_fn = file_path_from(args.vcf_fn)
    var_fn = file_path_from(args.var_fn, exit_on_not_found=True)
    bin_fn = args.bin_fn
    extend_bed = file_path_from(args.extend_bed)
    full_aln_regions = file_path_from(args.full_aln_regions)

    platform = args.platform
    if not platform or platform not in param.support_platform:
        sys.exit(
            "[ERROR] Provided platform are not in support platform list [ont, hifi, ilmn]"
        )

    pileup = args.pileup
    ctgName = args.ctgName
    min_af = args.min_af if args.min_af else param.min_af_dict[platform]
    snp_min_af = args.snp_min_af
    indel_min_af = args.indel_min_af

    if ctgName is None:
        sys.exit(
            "--ctgName must be specified. You can call variants on multiple chromosomes simultaneously."
        )

    pileup_mode = command_option_from(args.pileup, 'pileup')
    phasing_info_mode = command_option_from(args.phasing_info_in_bam,
                                            'phasing_info_in_bam')
    add_no_phasing_mode = command_option_from(
        args.add_no_phasing_data_training, 'add_no_phasing_data_training')
    allow_duplicate_mode = command_option_from(args.allow_duplicate_chr_pos,
                                               'allow_duplicate_chr_pos')
    maximum_non_variant_ratio = CommandOption('maximum_non_variant_ratio',
                                              args.maximum_non_variant_ratio)
    shuffle_mode = command_option_from(args.shuffle, 'shuffle')

    ctgStart = None
    ctgEnd = None
    chunk_id = None
    chunk_num = None
    if args.ctgStart is not None and args.ctgEnd is not None and int(
            args.ctgStart) <= int(args.ctgEnd):
        ctgStart = CommandOption('ctgStart', args.ctgStart)
        ctgEnd = CommandOption('ctgEnd', args.ctgEnd)

    if args.chunk_id is not None and args.chunk_num is not None and int(
            args.chunk_id) <= int(args.chunk_num):
        chunk_id = CommandOption('chunk_id', args.chunk_id)
        chunk_num = CommandOption('chunk_num', args.chunk_num)

    CT_Bin = CTP_Bin if pileup else CTFA_Bin
    create_tensor_command_options = [
        pypyBin,
        CT_Bin,
        CommandOption('bam_fn', bam_fn),
        CommandOption('ref_fn', ref_fn),
        CommandOption('vcf_fn', vcf_fn),
        CommandOption('ctgName', ctgName),
        CommandOption('platform', platform),
        CommandOption('samtools', samtoolsBin),
        CommandOption('bed_fn', bed_fn),
        CommandOption('extend_bed', extend_bed),
        CommandOption('min_af', min_af),
        CommandOption('snp_min_af', snp_min_af),
        CommandOption('indel_min_af', indel_min_af),
        ctgStart,
        ctgEnd,
        chunk_id,
        chunk_num,
    ]

    if not pileup:
        create_tensor_command_options.append(phasing_info_mode)
        create_tensor_command_options.append(add_no_phasing_mode)
        create_tensor_command_options.append(
            CommandOption('full_aln_regions', full_aln_regions))

    compress_tensor_command_options = [
        pythonBin,
        T2B_Bin,
        CommandOption('platform', platform),
        CommandOption('var_fn', var_fn),
        CommandOption('bin_fn', bin_fn),
        CommandOption('bed_fn', bed_fn),
        chunk_id,
        chunk_num,
        allow_duplicate_mode,
        maximum_non_variant_ratio,
        shuffle_mode,
    ]
    if pileup:
        compress_tensor_command_options.append(pileup_mode)

    try:
        c.create_tensor = subprocess_popen(
            shlex.split(command_string_from(create_tensor_command_options)), )

        c.compress_tensor = subprocess_popen(shlex.split(
            command_string_from(compress_tensor_command_options)),
                                             stdin=c.create_tensor.stdout,
                                             stdout=sys.stderr)
    except Exception as e:
        print(e, file=sys.stderr)
        sys.exit("Failed to start required processes. Exiting...")

    signal.signal(signal.SIGALRM, check_return_code)
    signal.alarm(2)

    try:
        c.compress_tensor.wait()
        signal.alarm(0)
        c.create_tensor.stdout.close()
        c.create_tensor.wait()
    except KeyboardInterrupt as e:
        print(
            "KeyboardInterrupt received when waiting at Tensor2Bin, terminating all scripts."
        )
        try:
            c.compress_tensor.terminate()
            c.create_tensor.terminate()
        except Exception as e:
            print(e)

        raise KeyboardInterrupt
    except Exception as e:
        print(
            "Exception received when waiting at CreateTensor, terminating all scripts."
        )
        print(e)
        try:
            c.compress_tensor.terminate()
            c.create_tensor.terminate()
        except Exception as e:
            print(e)

        raise e
Пример #5
0
def Run(args):
    basedir = dirname(__file__)

    CTP_Bin = basedir + "/../clair3.py CreateTensorPileup"
    CTFA_Bin = basedir + "/../clair3.py CreateTensorFullAlignment"
    RR_Bin = basedir + "/../clair3.py RealignReads"
    CVBin = basedir + "/../clair3.py CallVariants"

    if args.delay > 0:
        delay = random.randrange(0, args.delay)
        print("[INFO] Delay %d seconds before starting variant calling ..." % (delay))
        sleep(delay)

    pypyBin = executable_command_string_from(args.pypy, exit_on_not_found=True)
    pythonBin = executable_command_string_from(args.python, exit_on_not_found=True)
    samtoolsBin = executable_command_string_from(args.samtools, exit_on_not_found=True)

    chkpnt_fn = args.chkpnt_fn
    if args.pileup:
        bam_fn = file_path_from(args.bam_fn, exit_on_not_found=True)
    else:
        bam_fn = file_path_from(args.bam_fn)
        if bam_fn is None or bam_fn == "":
            print(log_warning(
                "[WARNING] Skip full-alignment variant calling for empty full-alignment regions"))
            return
    ref_fn = file_path_from(args.ref_fn, exit_on_not_found=True)
    bed_fn = file_path_from(args.bed_fn)
    vcf_fn = file_path_from(args.vcf_fn)
    extend_bed = file_path_from(args.extend_bed)
    full_aln_regions = file_path_from(args.full_aln_regions)

    platform = args.platform
    if not platform or platform not in param.support_platform:
        sys.exit("[ERROR] Provided platform are not in support platform list [ont, hifi, ilmn]")

    pileup = args.pileup
    call_fn = args.call_fn
    sampleName = args.sampleName
    ctgName = args.ctgName
    need_realignment = args.need_realignment and platform == 'ilmn' and not pileup
    min_af = args.min_af if args.min_af else param.min_af_dict[platform]
    snp_min_af = args.snp_min_af
    indel_min_af = args.indel_min_af

    if ctgName is None:
        sys.exit("--ctgName must be specified. You can call variants on multiple chromosomes simultaneously.")

    haploid_precise_mode = command_option_from(args.haploid_precise, 'haploid_precise')
    haploid_sensitive_mode = command_option_from(args.haploid_sensitive, 'haploid_sensitive')
    output_for_ensemble = command_option_from(args.output_for_ensemble, 'output_for_ensemble')
    showRef_mode = command_option_from(args.showRef, 'showRef')
    qual = command_option_from(args.qual, 'qual', option_value=args.qual)

    add_indel_length_mode = CommandOption('add_indel_length', args.add_indel_length)
    phasing_info_in_bam_mode = command_option_from(args.phasing_info_in_bam, 'phasing_info_in_bam')
    need_phasing_mode = command_option_from(args.need_phasing, 'need_phasing')
    is_from_tables_mode = command_option_from(args.is_from_tables, 'is_from_tables')
    pileup_mode = command_option_from(args.pileup, 'pileup')
    gvcf_mode = CommandOption('gvcf', args.gvcf)
    fast_mode = CommandOption('fast_mode', args.fast_mode)
    call_snp_only_mode = CommandOption('call_snp_only', args.call_snp_only)
    enable_long_indel_mode = CommandOption('enable_long_indel', args.enable_long_indel)

    ctgStart = None
    ctgEnd = None
    chunk_id = None
    chunk_num = None
    if args.ctgStart is not None and args.ctgEnd is not None and int(args.ctgStart) <= int(args.ctgEnd):
        ctgStart = CommandOption('ctgStart', args.ctgStart)
        ctgEnd = CommandOption('ctgEnd', args.ctgEnd)

    if args.chunk_id is not None and args.chunk_num is not None and int(args.chunk_id) <= int(args.chunk_num):
        chunk_id = CommandOption('chunk_id', args.chunk_id)
        chunk_num = CommandOption('chunk_num', args.chunk_num)

    if machine() in {"aarch64", "arm64"} or system() == "Darwin":
        taskSet = ""
    else:
        sched_getaffinity_list = list(os.sched_getaffinity(0))
        maxCpus = len(sched_getaffinity_list)
        if args.tensorflow_threads is None:
            numCpus = maxCpus
        else:
            numCpus = args.tensorflow_threads if args.tensorflow_threads < maxCpus else maxCpus

        _cpuSet = ",".join(str(x) for x in random.sample(sched_getaffinity_list, numCpus))

        taskSet = "taskset -c %s" % (_cpuSet)
        try:
            subprocess.check_output("which %s" % ("taskset"), shell=True)
        except:
            taskSet = ""

    if need_realignment:
        realign_reads_command_options = [
            pypyBin,
            RR_Bin,
            CommandOption('bam_fn', bam_fn),
            CommandOption('ref_fn', ref_fn),
            CommandOption('ctgName', ctgName),
            ctgStart,
            ctgEnd,
            chunk_id,
            chunk_num,
            CommandOption('samtools', samtoolsBin),
            CommandOption('extend_bed', extend_bed),
            CommandOption('full_aln_regions', full_aln_regions),
        ]
        bam_fn = "PIPE"
    CT_Bin = CTP_Bin if pileup else CTFA_Bin

    create_tensor_command_options = [
        pypyBin,
        CT_Bin,
        CommandOption('bam_fn', bam_fn),
        CommandOption('ref_fn', ref_fn),
        CommandOption('vcf_fn', vcf_fn),
        CommandOption('ctgName', ctgName),
        CommandOption('min_af', min_af),
        CommandOption('platform', platform),
        CommandOption('samtools', samtoolsBin),
        CommandOption('bed_fn', bed_fn),
        CommandOption('extend_bed', extend_bed),
        CommandOption('sampleName', args.sampleName),
        CommandOption('minCoverage', args.minCoverage),
        CommandOption('minMQ', args.minMQ),
        ctgStart,
        ctgEnd,
        chunk_id,
        chunk_num,
        gvcf_mode,
    ]

    if not pileup:
        create_tensor_command_options.append(phasing_info_in_bam_mode)
        create_tensor_command_options.append(need_phasing_mode)
        create_tensor_command_options.append(CommandOption('full_aln_regions', full_aln_regions))
    else:
        create_tensor_command_options.append(CommandOption('snp_min_af', snp_min_af))
        create_tensor_command_options.append(CommandOption('indel_min_af', indel_min_af))
        create_tensor_command_options.append(fast_mode)
        create_tensor_command_options.append(call_snp_only_mode)

        if (args.gvcf):
            create_tensor_command_options.append(CommandOption('base_err', args.base_err))
            create_tensor_command_options.append(CommandOption('gq_bin_size', args.gq_bin_size))
            create_tensor_command_options.append(CommandOption('temp_file_dir', args.temp_file_dir))
            if args.bp_resolution:
                create_tensor_command_options.append(CommandOptionWithNoValue('bp_resolution'))

    call_variant_command_options = [
        taskSet,
        pythonBin,
        CVBin,
        CommandOption('chkpnt_fn', chkpnt_fn),
        CommandOption('call_fn', call_fn),
        CommandOption('sampleName', sampleName),
        CommandOption('ref_fn', ref_fn),
        CommandOption('platform', platform),
        CommandOption('ctgName', ctgName),
        CommandOption('temp_file_dir', args.temp_file_dir),
        haploid_precise_mode,
        haploid_sensitive_mode,
        output_for_ensemble,
        qual,
        add_indel_length_mode,
        showRef_mode,
        is_from_tables_mode,
        pileup_mode,
        chunk_id,
        chunk_num,
        gvcf_mode,
        enable_long_indel_mode
    ]

    try:
        if need_realignment:
            c.realign_reads = subprocess_popen(
                shlex.split(command_string_from(realign_reads_command_options)),
            )
            c.create_tensor = subprocess_popen(
                shlex.split(command_string_from(create_tensor_command_options)),
                stdin=c.realign_reads.stdout)
        else:
            
            c.create_tensor = subprocess_popen(
                shlex.split(command_string_from(create_tensor_command_options)),
            )

        c.call_variant = subprocess_popen(
            shlex.split(command_string_from(call_variant_command_options)),
            stdin=c.create_tensor.stdout, stdout=sys.stderr
        )
    except Exception as e:
        print(e, file=sys.stderr)
        sys.exit("Failed to start required processes. Exiting...")

    signal.signal(signal.SIGALRM, check_return_code)
    signal.alarm(2)

    try:
        c.call_variant.wait()
        signal.alarm(0)
        c.create_tensor.stdout.close()
        c.create_tensor.wait()
        if need_realignment:
            c.realign_reads.stdout.close()
            c.realign_reads.wait()
    except KeyboardInterrupt as e:
        print("KeyboardInterrupt received when waiting at CallVarBam, terminating all scripts.")
        try:
            c.call_variant.terminate()
            c.create_tensor.terminate()
            if need_realignment:
                c.realign_reads.terminate()
        except Exception as e:
            print(e)

        raise KeyboardInterrupt
    except Exception as e:
        print("Exception received when waiting at CallVarBam, terminating all scripts.")
        print(e)
        try:
            c.call_variant.terminate()
            c.create_tensor.terminate()
            if need_realignment:
                c.realign_reads.terminate()
        except Exception as e:
            print(e)

        raise e