Пример #1
0
def test_assign(fam):
    x, y = symbols("x,y")
    for bc in (None, (0, 0), (0, 0, 0, 0)):
        dtype = 'D' if fam == 'F' else 'd'
        bc = 'periodic' if fam == 'F' else bc
        if bc == (0, 0, 0, 0) and fam in ('La', 'H'):
            continue
        tol = 1e-12 if fam in ('C', 'L', 'F') else 1e-5
        N = (10, 12)
        B0 = FunctionSpace(N[0], fam, dtype=dtype, bc=bc)
        B1 = FunctionSpace(N[1], fam, dtype=dtype, bc=bc)
        u_hat = Function(B0)
        u_hat[1:4] = 1
        ub_hat = Function(B1)
        u_hat.assign(ub_hat)
        assert abs(inner(1, u_hat)-inner(1, ub_hat)) < tol
        T = TensorProductSpace(comm, (B0, B1))
        u_hat = Function(T)
        u_hat[1:4, 1:4] = 1
        Tp = T.get_refined((2*N[0], 2*N[1]))
        ub_hat = Function(Tp)
        u_hat.assign(ub_hat)
        assert abs(inner(1, u_hat)-inner(1, ub_hat)) < tol
        VT = VectorSpace(T)
        u_hat = Function(VT)
        u_hat[:, 1:4, 1:4] = 1
        Tp = T.get_refined((2*N[0], 2*N[1]))
        VTp = VectorSpace(Tp)
        ub_hat = Function(VTp)
        u_hat.assign(ub_hat)
        assert abs(inner((1, 1), u_hat)-inner((1, 1), ub_hat)) < tol
Пример #2
0
def test_refine():
    assert comm.Get_size() < 7
    N = (8, 9, 10)
    F0 = FunctionSpace(8, 'F', dtype='D')
    F1 = FunctionSpace(9, 'F', dtype='D')
    F2 = FunctionSpace(10, 'F', dtype='d')
    T = TensorProductSpace(comm, (F0, F1, F2), slab=True, collapse_fourier=True)
    u_hat = Function(T)
    u = Array(T)
    u[:] = np.random.random(u.shape)
    u_hat = u.forward(u_hat)
    Tp = T.get_dealiased(padding_factor=(2, 2, 2))
    u_ = Array(Tp)
    up_hat = Function(Tp)
    assert up_hat.commsizes == u_hat.commsizes
    u2 = u_hat.refine(2*np.array(N))
    V = VectorSpace(T)
    u_hat = Function(V)
    u = Array(V)
    u[:] = np.random.random(u.shape)
    u_hat = u.forward(u_hat)
    Vp = V.get_dealiased(padding_factor=(2, 2, 2))
    u_ = Array(Vp)
    up_hat = Function(Vp)
    assert up_hat.commsizes == u_hat.commsizes
    u3 = u_hat.refine(2*np.array(N))
Пример #3
0
def test_curl_cc():
    theta, phi = sp.symbols('x,y', real=True, positive=True)
    psi = (theta, phi)
    r = 1
    rv = (r * sp.sin(theta) * sp.cos(phi), r * sp.sin(theta) * sp.sin(phi),
          r * sp.cos(theta))

    # Manufactured solution
    sph = sp.functions.special.spherical_harmonics.Ynm
    ue = sph(6, 3, theta, phi)

    N, M = 16, 12
    L0 = FunctionSpace(N, 'C', domain=(0, np.pi))
    F1 = FunctionSpace(M, 'F', dtype='D')
    T = TensorProductSpace(comm, (L0, F1), coordinates=(psi, rv))
    u_hat = Function(T, buffer=ue)
    du = curl(grad(u_hat))
    du.terms() == [[]]

    r, theta, z = psi = sp.symbols('x,y,z', real=True, positive=True)
    rv = (r * sp.cos(theta), r * sp.sin(theta), z)

    # Manufactured solution
    ue = (r * (1 - r) * sp.cos(4 * theta) - 1 * (r - 1)) * sp.cos(4 * z)

    N = 12
    F0 = FunctionSpace(N, 'F', dtype='D')
    F1 = FunctionSpace(N, 'F', dtype='d')
    L = FunctionSpace(N, 'L', bc='Dirichlet', domain=(0, 1))
    T = TensorProductSpace(comm, (L, F0, F1), coordinates=(psi, rv))
    T1 = T.get_orthogonal()
    V = VectorSpace(T1)
    u_hat = Function(T, buffer=ue)
    du = project(curl(grad(u_hat)), V)
    assert np.linalg.norm(du) < 1e-10
Пример #4
0
def test_mixed_3D(backend, forward_output, as_scalar):
    if (backend == 'netcdf4' and forward_output is True) or skip[backend]:
        return
    K0 = FunctionSpace(N[0], 'F', dtype='D', domain=(0, np.pi))
    K1 = FunctionSpace(N[1], 'F', dtype='d', domain=(0, 2 * np.pi))
    K2 = FunctionSpace(N[2], 'C')
    T = TensorProductSpace(comm, (K0, K1, K2))
    TT = VectorSpace(T)
    filename = 'test3Dm_{}'.format(ex[forward_output])
    hfile = writer(filename, TT, backend=backend)
    uf = Function(TT, val=2) if forward_output else Array(TT, val=2)
    uf[0] = 1
    data = {
        'ux': (uf[0], (uf[0], [slice(None), 4,
                               slice(None)]), (uf[0], [slice(None), 4, 4])),
        'uy': (uf[1], (uf[1], [slice(None), 4,
                               slice(None)]), (uf[1], [slice(None), 4, 4])),
        'u': [uf, (uf, [slice(None), 4, slice(None)])]
    }
    hfile.write(0, data, as_scalar=as_scalar)
    hfile.write(1, data, as_scalar=as_scalar)
    if not forward_output and backend == 'hdf5' and comm.Get_rank() == 0:
        generate_xdmf(filename + '.h5')

    if as_scalar is False:
        u0 = Function(TT) if forward_output else Array(TT)
        read = reader(filename, TT, backend=backend)
        read.read(u0, 'u', step=1)
        assert np.allclose(u0, uf)
    else:
        u0 = Function(T) if forward_output else Array(T)
        read = reader(filename, T, backend=backend)
        read.read(u0, 'u0', step=1)
        assert np.allclose(u0, uf[0])
    cleanup()
Пример #5
0
def test_curl(typecode):
    K0 = FunctionSpace(N[0], 'F', dtype=typecode.upper())
    K1 = FunctionSpace(N[1], 'F', dtype=typecode.upper())
    K2 = FunctionSpace(N[2], 'F', dtype=typecode)
    T = TensorProductSpace(comm, (K0, K1, K2), dtype=typecode)
    X = T.local_mesh(True)
    K = T.local_wavenumbers()
    Tk = VectorSpace(T)
    u = shenfun.TrialFunction(Tk)
    v = shenfun.TestFunction(Tk)

    U = Array(Tk)
    U_hat = Function(Tk)
    curl_hat = Function(Tk)
    curl_ = Array(Tk)

    # Initialize a Taylor Green vortex
    U[0] = np.sin(X[0]) * np.cos(X[1]) * np.cos(X[2])
    U[1] = -np.cos(X[0]) * np.sin(X[1]) * np.cos(X[2])
    U[2] = 0
    U_hat = Tk.forward(U, U_hat)
    Uc = U_hat.copy()
    U = Tk.backward(U_hat, U)
    U_hat = Tk.forward(U, U_hat)
    assert allclose(U_hat, Uc)

    divu_hat = project(div(U_hat), T)
    divu = Array(T)
    divu = T.backward(divu_hat, divu)
    assert allclose(divu, 0)

    curl_hat[0] = 1j * (K[1] * U_hat[2] - K[2] * U_hat[1])
    curl_hat[1] = 1j * (K[2] * U_hat[0] - K[0] * U_hat[2])
    curl_hat[2] = 1j * (K[0] * U_hat[1] - K[1] * U_hat[0])

    curl_ = Tk.backward(curl_hat, curl_)

    w_hat = Function(Tk)
    w_hat = inner(v, curl(U_hat), output_array=w_hat)
    A = inner(v, u)
    for i in range(3):
        w_hat[i] = A[i].solve(w_hat[i])

    w = Array(Tk)
    w = Tk.backward(w_hat, w)
    assert allclose(w, curl_)

    u_hat = Function(Tk)
    u_hat = inner(v, U, output_array=u_hat)
    for i in range(3):
        u_hat[i] = A[i].solve(u_hat[i])

    uu = Array(Tk)
    uu = Tk.backward(u_hat, uu)

    assert allclose(u_hat, U_hat)
Пример #6
0
def test_cylinder():
    T = get_function_space('cylinder')
    u = TrialFunction(T)
    du = div(grad(u))
    assert du.tolatex() == '\\frac{\\partial^2 u}{\\partial x^2 }+\\frac{1}{x}\\frac{\\partial  u}{\\partial x  }+\\frac{1}{x^{2}}\\frac{\\partial^2 u}{\\partial y^2 }+\\frac{\\partial^2 u}{\\partial z^2 }'
    V = VectorSpace(T)
    u = TrialFunction(V)
    du = div(grad(u))
    assert du.tolatex() == '\\left( \\frac{\\partial^2 u^{x}}{\\partial x^2 }+\\frac{1}{x}\\frac{\\partial  u^{x}}{\\partial x  }+\\frac{1}{x^{2}}\\frac{\\partial^2 u^{x}}{\\partial y^2 }- \\frac{2}{x}\\frac{\\partial  u^{y}}{\\partial y  }- \\frac{1}{x^{2}}u^{x}+\\frac{\\partial^2 u^{x}}{\\partial z^2 }\\right) \\mathbf{b}_{x} \\\\+\\left( \\frac{\\partial^2 u^{y}}{\\partial x^2 }+\\frac{3}{x}\\frac{\\partial  u^{y}}{\\partial x  }+\\frac{2}{x^{3}}\\frac{\\partial  u^{x}}{\\partial y  }+\\frac{1}{x^{2}}\\frac{\\partial^2 u^{y}}{\\partial y^2 }+\\frac{\\partial^2 u^{y}}{\\partial z^2 }\\right) \\mathbf{b}_{y} \\\\+\\left( \\frac{\\partial^2 u^{z}}{\\partial x^2 }+\\frac{1}{x}\\frac{\\partial  u^{z}}{\\partial x  }+\\frac{1}{x^{2}}\\frac{\\partial^2 u^{z}}{\\partial y^2 }+\\frac{\\partial^2 u^{z}}{\\partial z^2 }\\right) \\mathbf{b}_{z} \\\\'
Пример #7
0
def test_curl2():
    # Test projection of curl

    K0 = FunctionSpace(N[0], 'C', bc=(0, 0))
    K1 = FunctionSpace(N[1], 'F', dtype='D')
    K2 = FunctionSpace(N[2], 'F', dtype='d')
    K3 = FunctionSpace(N[0], 'C')

    T = TensorProductSpace(comm, (K0, K1, K2))
    TT = TensorProductSpace(comm, (K3, K1, K2))
    X = T.local_mesh(True)
    K = T.local_wavenumbers(False)
    Tk = VectorSpace(T)
    TTk = VectorSpace([T, T, TT])

    U = Array(Tk)
    U_hat = Function(Tk)
    curl_hat = Function(TTk)
    curl_ = Array(TTk)

    # Initialize a Taylor Green vortex
    U[0] = np.sin(X[0]) * np.cos(X[1]) * np.cos(X[2]) * (1 - X[0]**2)
    U[1] = -np.cos(X[0]) * np.sin(X[1]) * np.cos(X[2]) * (1 - X[0]**2)
    U[2] = 0
    U_hat = Tk.forward(U, U_hat)
    Uc = U_hat.copy()
    U = Tk.backward(U_hat, U)
    U_hat = Tk.forward(U, U_hat)
    assert allclose(U_hat, Uc)

    # Compute curl first by computing each term individually
    curl_hat[0] = 1j * (K[1] * U_hat[2] - K[2] * U_hat[1])
    curl_[0] = T.backward(
        curl_hat[0], curl_[0])  # No x-derivatives, still in Dirichlet space
    dwdx_hat = project(Dx(U_hat[2], 0, 1), TT)  # Need to use space without bc
    dvdx_hat = project(Dx(U_hat[1], 0, 1), TT)  # Need to use space without bc
    dwdx = Array(TT)
    dvdx = Array(TT)
    dwdx = TT.backward(dwdx_hat, dwdx)
    dvdx = TT.backward(dvdx_hat, dvdx)
    curl_hat[1] = 1j * K[2] * U_hat[0]
    curl_hat[2] = -1j * K[1] * U_hat[0]
    curl_[1] = T.backward(curl_hat[1], curl_[1])
    curl_[2] = T.backward(curl_hat[2], curl_[2])
    curl_[1] -= dwdx
    curl_[2] += dvdx

    # Now do it with project
    w_hat = project(curl(U_hat), TTk)
    w = Array(TTk)
    w = TTk.backward(w_hat, w)
    assert allclose(w, curl_)
Пример #8
0
def test_vector_laplace(space):
    """Test that

    div(grad(u)) = grad(div(u)) - curl(curl(u))

    """
    T = get_function_space(space)
    V = VectorSpace(T)
    u = TrialFunction(V)
    v = _TestFunction(V)
    du = div(grad(u))
    dv = grad(div(u)) - curl(curl(u))
    u_hat = Function(V)
    u_hat[:] = np.random.random(u_hat.shape) + np.random.random(u_hat.shape)*1j
    A0 = inner(v, du)
    A1 = inner(v, dv)
    a0 = BlockMatrix(A0)
    a1 = BlockMatrix(A1)
    b0 = Function(V)
    b1 = Function(V)
    b0 = a0.matvec(u_hat, b0)
    b1 = a1.matvec(u_hat, b1)
    assert np.linalg.norm(b0-b1) < 1e-8
Пример #9
0
def get_context():
    """Set up context for solver"""

    collapse_fourier = False if params.dealias == '3/2-rule' else True
    family = 'C'
    ST = FunctionSpace(params.N[0], family, bc=(0, 0), quad=params.Dquad)
    CT = FunctionSpace(params.N[0], family, quad=params.Dquad)
    CP = FunctionSpace(params.N[0], family, quad=params.Dquad)
    K0 = FunctionSpace(params.N[1], 'F', domain=(0, params.L[1]), dtype='D')
    K1 = FunctionSpace(params.N[2], 'F', domain=(0, params.L[2]), dtype='d')
    #CP.slice = lambda: slice(0, CP.N-2)

    constraints = ((3, 0, 0), (3, params.N[0] - 1, 0))

    kw0 = {
        'threads': params.threads,
        'planner_effort': params.planner_effort["dct"],
        'slab': (params.decomposition == 'slab'),
        'collapse_fourier': collapse_fourier
    }
    FST = TensorProductSpace(comm, (ST, K0, K1), **kw0)  # Dirichlet
    FCT = TensorProductSpace(comm, (CT, K0, K1), **kw0)  # Regular Chebyshev N
    FCP = TensorProductSpace(comm, (CP, K0, K1),
                             **kw0)  # Regular Chebyshev N-2
    VFS = VectorSpace(FST)
    VCT = VectorSpace(FCT)
    VQ = CompositeSpace([VFS, FCP])

    mask = FST.get_mask_nyquist() if params.mask_nyquist else None

    # Padded
    kw = {
        'padding_factor': 1.5 if params.dealias == '3/2-rule' else 1,
        'dealias_direct': params.dealias == '2/3-rule'
    }
    if params.dealias == '3/2-rule':
        # Requires new bases due to planning and transforms on different size arrays
        STp = FunctionSpace(params.N[0], family, bc=(0, 0), quad=params.Dquad)
        CTp = FunctionSpace(params.N[0], family, quad=params.Dquad)
    else:
        STp, CTp = ST, CT
    K0p = FunctionSpace(params.N[1],
                        'F',
                        dtype='D',
                        domain=(0, params.L[1]),
                        **kw)
    K1p = FunctionSpace(params.N[2],
                        'F',
                        dtype='d',
                        domain=(0, params.L[2]),
                        **kw)
    FSTp = TensorProductSpace(comm, (STp, K0p, K1p), **kw0)
    FCTp = TensorProductSpace(comm, (CTp, K0p, K1p), **kw0)
    VFSp = VectorSpace(FSTp)
    VCp = CompositeSpace([FSTp, FCTp, FCTp])

    float, complex, mpitype = datatypes("double")

    # Mesh variables
    X = FST.local_mesh(True)
    x0, x1, x2 = FST.mesh()
    K = FST.local_wavenumbers(scaled=True)

    # Solution variables
    UP_hat = Function(VQ)
    UP_hat0 = Function(VQ)
    U_hat, P_hat = UP_hat
    U_hat0, P_hat0 = UP_hat0

    UP = Array(VQ)
    UP0 = Array(VQ)
    U, P = UP
    U0, P0 = UP0

    # RK parameters
    a = (8. / 15., 5. / 12., 3. / 4.)
    b = (0.0, -17. / 60., -5. / 12.)

    # primary variable
    u = UP_hat

    H_hat = Function(VFS)

    dU = Function(VQ)
    hv = np.zeros((2, ) + H_hat.shape, dtype=np.complex)

    Source = Array(
        VFS)  # Note - not using VQ. Only used for constant pressure gradient
    Sk = Function(VFS)

    K2 = K[1] * K[1] + K[2] * K[2]

    for i in range(3):
        K[i] = K[i].astype(float)

    work = work_arrays()
    u_dealias = Array(VFSp)
    curl_hat = Function(VCp)
    curl_dealias = Array(VCp)

    nu, dt, N = params.nu, params.dt, params.N

    up = TrialFunction(VQ)
    vq = TestFunction(VQ)

    ut, pt = up
    vt, qt = vq

    M = []
    for rk in range(3):
        a0 = inner(vt, (2. / nu / dt / (a[rk] + b[rk])) * ut - div(grad(ut)))
        a1 = inner(vt, (2. / nu / (a[rk] + b[rk])) * grad(pt))
        a2 = inner(qt, (2. / nu / (a[rk] + b[rk])) * div(ut))
        M.append(BlockMatrix(a0 + a1 + a2))

    # Collect all matrices
    if ST.family() == 'chebyshev':
        mat = config.AttributeDict(
            dict(AB=[
                HelmholtzCoeff(N[0], 1.,
                               -(K2 - 2. / nu / dt / (a[rk] + b[rk])), 0,
                               ST.quad) for rk in range(3)
            ], ))
    else:
        mat = config.AttributeDict(
            dict(ADD=inner_product((ST, 0), (ST, 2)),
                 BDD=inner_product((ST, 0), (ST, 0))))

    la = None

    hdf5file = CoupledRK3File(config.params.solver,
                              checkpoint={
                                  'space': VQ,
                                  'data': {
                                      '0': {
                                          'UP': [UP_hat]
                                      }
                                  }
                              },
                              results={
                                  'space': VFS,
                                  'data': {
                                      'U': [U]
                                  }
                              })

    del rk
    return config.AttributeDict(locals())
Пример #10
0
N = (200, 200)

K0 = FunctionSpace(N[0], 'F', dtype='D', domain=(-1., 1.))
K1 = FunctionSpace(N[1], 'F', dtype='d', domain=(-1., 1.))
T = TensorProductSpace(comm, (K0, K1))
u = TrialFunction(T)
v = TestFunction(T)

# For nonlinear term we can use the 3/2-rule with padding
Tp = T.get_dealiased((1.5, 1.5))

# Turn on padding by commenting
#Tp = T

# Create vector spaces and a test function for the regular vector space
TV = VectorSpace(T)
TVp = VectorSpace(Tp)
vv = TestFunction(TV)
uu = TrialFunction(TV)

# Declare solution arrays and work arrays
UV = Array(TV, buffer=(u0, v0))
UVp = Array(TVp)
U, V = UV  # views into vector components
UV_hat = Function(TV)
w0 = Function(TV)  # Work array spectral space
w1 = Array(TVp)  # Work array physical space

e1 = 0.00002
e2 = 0.00001
b0 = 0.03
Пример #11
0
def test_transform(typecode, dim):
    s = (True,)
    if comm.Get_size() > 2 and dim > 2:
        s = (True, False)

    for slab in s:
        for shape in product(*([sizes]*dim)):
            bases = []
            for n in shape[:-1]:
                bases.append(FunctionSpace(n, 'F', dtype=typecode.upper()))
            bases.append(FunctionSpace(shape[-1], 'F', dtype=typecode))

            fft = TensorProductSpace(comm, bases, dtype=typecode, slab=slab)

            if comm.rank == 0:
                grid = [c.size for c in fft.subcomm]
                print('grid:{} shape:{} typecode:{}'
                      .format(grid, shape, typecode))

            U = random_like(fft.forward.input_array)

            F = fft.forward(U)
            V = fft.backward(F)
            assert allclose(V, U)

            # Alternative method
            fft.forward.input_array[...] = U
            fft.forward(fast_transform=False)
            fft.backward(fast_transform=False)
            V = fft.backward.output_array
            assert allclose(V, U)

            TT = VectorSpace(fft)
            U = Array(TT)
            V = Array(TT)
            F = Function(TT)
            U[:] = random_like(U)
            F = TT.forward(U, F)
            V = TT.backward(F, V)
            assert allclose(V, U)

            TM = CompositeSpace([fft, fft])
            U = Array(TM)
            V = Array(TM)
            F = Function(TM)
            U[:] = random_like(U)
            F = TM.forward(U, F)
            V = TM.backward(F, V)
            assert allclose(V, U)

            fftp = fft.get_dealiased(padding_factor=1.5)

            #fft.destroy()

            #padding = 1.5
            #bases = []
            #for n in shape[:-1]:
            #    bases.append(FunctionSpace(n, 'F', dtype=typecode.upper(), padding_factor=padding))
            #bases.append(FunctionSpace(shape[-1], 'F', dtype=typecode, padding_factor=padding))

            #fft = TensorProductSpace(comm, bases, dtype=typecode)

            if comm.rank == 0:
                grid = [c.size for c in fftp.subcomm]
                print('grid:{} shape:{} typecode:{}'
                      .format(grid, shape, typecode))

            U = random_like(fftp.forward.input_array)
            F = fftp.forward(U)

            Fc = F.copy()
            V = fftp.backward(F)
            F = fftp.forward(V)
            assert allclose(F, Fc)

            # Alternative method
            fftp.backward.input_array[...] = F
            fftp.backward()
            fftp.forward()
            V = fftp.forward.output_array
            assert allclose(F, V)

            fftp.destroy()
            fft.destroy()
Пример #12
0
def get_context():
    """Set up context for classical (NS) solver"""
    float, complex, mpitype = datatypes(params.precision)
    collapse_fourier = False if params.dealias == '3/2-rule' else True
    dim = len(params.N)
    dtype = lambda d: float if d == dim - 1 else complex
    V = [
        FunctionSpace(params.N[i],
                      'F',
                      domain=(0, params.L[i]),
                      dtype=dtype(i)) for i in range(dim)
    ]

    kw0 = {
        'threads': params.threads,
        'planner_effort': params.planner_effort['fft']
    }
    T = TensorProductSpace(comm,
                           V,
                           dtype=float,
                           slab=(params.decomposition == 'slab'),
                           collapse_fourier=collapse_fourier,
                           **kw0)
    VT = VectorSpace(T)

    # Different bases for nonlinear term, either 2/3-rule or 3/2-rule
    kw = {
        'padding_factor': 1.5 if params.dealias == '3/2-rule' else 1,
        'dealias_direct': params.dealias == '2/3-rule'
    }

    Vp = [
        FunctionSpace(params.N[i],
                      'F',
                      domain=(0, params.L[i]),
                      dtype=dtype(i),
                      **kw) for i in range(dim)
    ]

    Tp = TensorProductSpace(comm,
                            Vp,
                            dtype=float,
                            slab=(params.decomposition == 'slab'),
                            collapse_fourier=collapse_fourier,
                            **kw0)
    VTp = VectorSpace(Tp)

    mask = T.get_mask_nyquist() if params.mask_nyquist else None

    # Mesh variables
    X = T.local_mesh(True)
    K = T.local_wavenumbers(scaled=True)
    for i in range(dim):
        X[i] = X[i].astype(float)
        K[i] = K[i].astype(float)
    K2 = np.zeros(T.shape(True), dtype=float)
    for i in range(dim):
        K2 += K[i] * K[i]

    K_over_K2 = np.zeros(VT.shape(True), dtype=float)
    for i in range(dim):
        K_over_K2[i] = K[i] / np.where(K2 == 0, 1, K2)

    # Velocity and pressure. Use ndarray view for efficiency
    U = Array(VT)
    U_hat = Function(VT)
    P = Array(T)
    P_hat = Function(T)
    u_dealias = Array(VTp)

    # Primary variable
    u = U_hat

    # RHS array
    dU = Function(VT)
    curl = Array(VT)
    Source = Function(VT)  # Possible source term initialized to zero
    work = work_arrays()

    hdf5file = NSFile(config.params.solver,
                      checkpoint={
                          'space': VT,
                          'data': {
                              '0': {
                                  'U': [U_hat]
                              }
                          }
                      },
                      results={
                          'space': VT,
                          'data': {
                              'U': [U],
                              'P': [P]
                          }
                      })

    return config.AttributeDict(locals())
ua = ((x - 1)**2 * (y - 1) * (y + 1), 5 * (y + 1)**2 * (x - 1) * (x + 1))
f = (-ua[0].diff(x, 2) - ua[0].diff(y, 2),
     -ua[1].diff(x, 2) - ua[1].diff(y, 2))

neumann_condition_x = ua[0].diff(x).evalf(subs={x: -1})
neumann_condition_y = ua[1].diff(y).evalf(subs={y: 1})

FXX = FunctionSpace(20, family='legendre', bc=(None, 0))
FXY = FunctionSpace(20, family='legendre', bc=(0, 0))
FYX = FunctionSpace(20, family='legendre', bc=(0, 0))
FYY = FunctionSpace(20, family='legendre', bc=(0, None))

TX = TensorProductSpace(comm, (FXX, FXY))
TY = TensorProductSpace(comm, (FYX, FYY))

V = VectorSpace([TX, TY])

u = TrialFunction(V)
v = TestFunction(V)
mat = inner(grad(u), grad(v))
fj = Array(V, buffer=f)
rhs = inner(v, fj)

# boundary integrals
# x - component
v_bndry_x = TestFunction(FXY)
gn_x = Array(FXY, buffer=neumann_condition_x)
evaluate_bndry_x = FXX.evaluate_basis_all(-1)
project_gn_x = inner(gn_x, v_bndry_x)
bndry_integral_x = -np.outer(evaluate_bndry_x, project_gn_x)
# y - component
Пример #14
0
def get_context():
    float, complex, mpitype = datatypes(params.precision)
    collapse_fourier = False if params.dealias == '3/2-rule' else True
    dim = len(params.N)
    dtype = lambda d: float if d == dim - 1 else complex
    V = [
        FunctionSpace(params.N[i],
                      'F',
                      domain=(0, params.L[i]),
                      dtype=dtype(i)) for i in range(dim)
    ]

    kw0 = {
        'threads': params.threads,
        'planner_effort': params.planner_effort['fft']
    }
    T = TensorProductSpace(comm,
                           V,
                           dtype=float,
                           slab=(params.decomposition == 'slab'),
                           collapse_fourier=collapse_fourier,
                           **kw0)
    VT = VectorSpace(T)
    VM = CompositeSpace([T] * 2 * dim)

    mask = T.get_mask_nyquist() if params.mask_nyquist else None

    kw = {
        'padding_factor': 1.5 if params.dealias == '3/2-rule' else 1,
        'dealias_direct': params.dealias == '2/3-rule'
    }

    Vp = [
        FunctionSpace(params.N[i],
                      'F',
                      domain=(0, params.L[i]),
                      dtype=dtype(i),
                      **kw) for i in range(dim)
    ]

    Tp = TensorProductSpace(comm,
                            Vp,
                            dtype=float,
                            slab=(params.decomposition == 'slab'),
                            collapse_fourier=collapse_fourier,
                            **kw0)
    VTp = VectorSpace(Tp)
    VMp = CompositeSpace([Tp] * 2 * dim)

    # Mesh variables
    X = T.local_mesh(True)
    K = T.local_wavenumbers(scaled=True)
    for i in range(dim):
        X[i] = X[i].astype(float)
        K[i] = K[i].astype(float)
    K2 = np.zeros(T.shape(True), dtype=float)
    for i in range(dim):
        K2 += K[i] * K[i]

    K_over_K2 = np.zeros(VT.shape(True), dtype=float)
    for i in range(dim):
        K_over_K2[i] = K[i] / np.where(K2 == 0, 1, K2)

    UB = Array(VM)
    P = Array(T)
    curl = Array(VT)
    UB_hat = Function(VM)
    P_hat = Function(T)
    dU = Function(VM)
    Source = Array(VM)
    ub_dealias = Array(VMp)
    ZZ_hat = np.zeros((3, 3) + Tp.shape(True), dtype=complex)  # Work array

    # Create views into large data structures
    U = UB[:3]
    U_hat = UB_hat[:3]
    B = UB[3:]
    B_hat = UB_hat[3:]

    # Primary variable
    u = UB_hat

    hdf5file = MHDFile(config.params.solver,
                       checkpoint={
                           'space': VM,
                           'data': {
                               '0': {
                                   'UB': [UB_hat]
                               }
                           }
                       },
                       results={
                           'space': VM,
                           'data': {
                               'UB': [UB]
                           }
                       })

    return config.AttributeDict(locals())
Пример #15
0
def get_context():
    """Set up context for solver"""

    # Get points and weights for Chebyshev weighted integrals
    assert params.Dquad == params.Bquad
    collapse_fourier = False if params.dealias == '3/2-rule' else True
    ST = FunctionSpace(params.N[0], 'C', bc=(0, 0), quad=params.Dquad)
    CT = FunctionSpace(params.N[0], 'C', quad=params.Dquad)
    CP = FunctionSpace(params.N[0], 'C', quad=params.Dquad)
    K0 = FunctionSpace(params.N[1], 'F', domain=(0, params.L[1]), dtype='D')
    K1 = FunctionSpace(params.N[2], 'F', domain=(0, params.L[2]), dtype='d')
    CP.slice = lambda: slice(0, CT.N)

    kw0 = {'threads': params.threads,
           'planner_effort': params.planner_effort["dct"],
           'slab': (params.decomposition == 'slab'),
           'collapse_fourier': collapse_fourier}
    FST = TensorProductSpace(comm, (ST, K0, K1), **kw0)    # Dirichlet
    FCT = TensorProductSpace(comm, (CT, K0, K1), **kw0)    # Regular Chebyshev N
    FCP = TensorProductSpace(comm, (CP, K0, K1), **kw0)    # Regular Chebyshev N-2
    VFS = VectorSpace(FST)
    VCT = VectorSpace(FCT)
    VQ = CompositeSpace([VFS, FCP])

    mask = FST.get_mask_nyquist() if params.mask_nyquist else None

    # Padded
    kw = {'padding_factor': 1.5 if params.dealias == '3/2-rule' else 1,
          'dealias_direct': params.dealias == '2/3-rule'}
    if params.dealias == '3/2-rule':
        # Requires new bases due to planning and transforms on different size arrays
        STp = FunctionSpace(params.N[0], 'C', bc=(0, 0), quad=params.Dquad)
        CTp = FunctionSpace(params.N[0], 'C', quad=params.Dquad)
    else:
        STp, CTp = ST, CT
    K0p = FunctionSpace(params.N[1], 'F', dtype='D', domain=(0, params.L[1]), **kw)
    K1p = FunctionSpace(params.N[2], 'F', dtype='d', domain=(0, params.L[2]), **kw)
    FSTp = TensorProductSpace(comm, (STp, K0p, K1p), **kw0)
    FCTp = TensorProductSpace(comm, (CTp, K0p, K1p), **kw0)
    VFSp = VectorSpace(FSTp)
    VCp = CompositeSpace([FSTp, FCTp, FCTp])

    float, complex, mpitype = datatypes("double")

    constraints = ((3, 0, 0),
                   (3, params.N[0]-1, 0))

    # Mesh variables
    X = FST.local_mesh(True)
    x0, x1, x2 = FST.mesh()
    K = FST.local_wavenumbers(scaled=True)

    # Solution variables
    UP_hat = Function(VQ)
    UP_hat0 = Function(VQ)
    U_hat, P_hat = UP_hat
    U_hat0, P_hat0 = UP_hat0

    UP = Array(VQ)
    UP0 = Array(VQ)
    U, P = UP
    U0, P0 = UP0

    # primary variable
    u = UP_hat

    H_hat = Function(VFS)
    H_hat0 = Function(VFS)
    H_hat1 = Function(VFS)

    dU = Function(VQ)
    Source = Array(VFS) # Note - not using VQ. Only used for constant pressure gradient
    Sk = Function(VFS)

    K2 = K[1]*K[1]+K[2]*K[2]

    for i in range(3):
        K[i] = K[i].astype(float)

    work = work_arrays()
    u_dealias = Array(VFSp)
    curl_hat = Function(VCp)
    curl_dealias = Array(VCp)

    nu, dt, N = params.nu, params.dt, params.N

    up = TrialFunction(VQ)
    vq = TestFunction(VQ)

    ut, pt = up
    vt, qt = vq

    alfa = 2./nu/dt
    a0 = inner(vt, (2./nu/dt)*ut-div(grad(ut)))
    a1 = inner(vt, (2./nu)*grad(pt))
    a2 = inner(qt, (2./nu)*div(ut))

    M = BlockMatrix(a0+a1+a2)

    # Collect all matrices
    mat = config.AttributeDict(
        dict(CDD=inner_product((ST, 0), (ST, 1)),
             AB=HelmholtzCoeff(N[0], 1., alfa-K2, 0, ST.quad),))

    la = None

    hdf5file = CoupledFile(config.params.solver,
                        checkpoint={'space': VQ,
                                    'data': {'0': {'UP': [UP_hat]},
                                             '1': {'UP': [UP_hat0]}}},
                        results={'space': VFS,
                                 'data': {'U': [U]}})

    return config.AttributeDict(locals())
Пример #16
0
def get_context():
    """Set up context for solver"""

    # Get points and weights for Chebyshev weighted integrals
    assert params.Dquad == params.Bquad
    collapse_fourier = False if params.dealias == '3/2-rule' else True
    ST = FunctionSpace(params.N[0], 'C', bc=(0, 0), quad=params.Dquad)
    SB = FunctionSpace(params.N[0], 'C', bc='Biharmonic', quad=params.Bquad)
    CT = FunctionSpace(params.N[0], 'C', quad=params.Dquad)
    ST0 = FunctionSpace(params.N[0], 'C', bc=(0, 0),
                        quad=params.Dquad)  # For 1D problem
    K0 = FunctionSpace(params.N[1], 'F', domain=(0, params.L[1]), dtype='D')
    K1 = FunctionSpace(params.N[2], 'F', domain=(0, params.L[2]), dtype='d')

    kw0 = {
        'threads': params.threads,
        'planner_effort': params.planner_effort["dct"],
        'slab': (params.decomposition == 'slab'),
        'collapse_fourier': collapse_fourier,
        'modify_spaces_inplace': True
    }
    FST = TensorProductSpace(comm, (ST, K0, K1), **kw0)  # Dirichlet
    FSB = TensorProductSpace(comm, (SB, K0, K1), **kw0)  # Biharmonic
    FCT = TensorProductSpace(comm, (CT, K0, K1), **kw0)  # Regular Chebyshev
    VFS = VectorSpace([FSB, FST, FST])
    VFST = VectorSpace([FST, FST, FST])
    VUG = CompositeSpace([FSB, FST])
    VCT = VectorSpace(FCT)

    mask = FST.get_mask_nyquist() if params.mask_nyquist else None

    # Padded
    kw = {
        'padding_factor': 1.5 if params.dealias == '3/2-rule' else 1,
        'dealias_direct': params.dealias == '2/3-rule'
    }
    if params.dealias == '3/2-rule':
        # Requires new bases due to planning and transforms on different size arrays
        STp = FunctionSpace(params.N[0], 'C', bc=(0, 0), quad=params.Dquad)
        SBp = FunctionSpace(params.N[0],
                            'C',
                            bc='Biharmonic',
                            quad=params.Bquad)
        CTp = FunctionSpace(params.N[0], 'C', quad=params.Dquad)
    else:
        STp, SBp, CTp = ST, SB, CT
    K0p = FunctionSpace(params.N[1],
                        'F',
                        dtype='D',
                        domain=(0, params.L[1]),
                        **kw)
    K1p = FunctionSpace(params.N[2],
                        'F',
                        dtype='d',
                        domain=(0, params.L[2]),
                        **kw)
    FSTp = TensorProductSpace(comm, (STp, K0p, K1p), **kw0)
    FSBp = TensorProductSpace(comm, (SBp, K0p, K1p), **kw0)
    FCTp = TensorProductSpace(comm, (CTp, K0p, K1p), **kw0)
    VFSp = VectorSpace([FSBp, FSTp, FSTp])

    float, complex, mpitype = datatypes("double")

    # Mesh variables
    X = FST.local_mesh(True)
    x0, x1, x2 = FST.mesh()
    K = FST.local_wavenumbers(scaled=True)

    # Solution variables
    U = Array(VFS)
    U0 = Array(VFS)
    U_hat = Function(VFS)
    U_hat0 = Function(VFS)
    g = Function(FST)

    # primary variable
    u = (U_hat, g)

    H_hat = Function(VFST)
    H_hat0 = Function(VFST)
    H_hat1 = Function(VFST)

    dU = Function(VFS)
    hv = Function(FSB)
    hg = Function(FST)
    Source = Array(VFS)
    Sk = Function(VFS)

    K2 = K[1] * K[1] + K[2] * K[2]
    K4 = K2**2

    K_over_K2 = np.zeros((2, ) + g.shape)
    for i in range(2):
        K_over_K2[i] = K[i + 1] / np.where(K2 == 0, 1, K2)

    for i in range(3):
        K[i] = K[i].astype(float)

    work = work_arrays()
    u_dealias = Array(VFSp)
    u0_hat = np.zeros((2, params.N[0]), dtype=complex)
    h0_hat = np.zeros((2, params.N[0]), dtype=complex)
    w = np.zeros((params.N[0], ), dtype=complex)
    w1 = np.zeros((params.N[0], ), dtype=complex)

    nu, dt, N = params.nu, params.dt, params.N

    alfa = K2 - 2.0 / nu / dt

    # Collect all matrices
    mat = config.AttributeDict(
        dict(
            CDD=inner_product((ST, 0), (ST, 1)),
            AB=HelmholtzCoeff(N[0], 1., -(K2 - 2.0 / nu / dt), 0, ST.quad),
            AC=BiharmonicCoeff(N[0], nu * dt / 2., (1. - nu * dt * K2),
                               -(K2 - nu * dt / 2. * K4), 0, SB.quad),
            # Matrices for biharmonic equation
            CBD=inner_product((SB, 0), (ST, 1)),
            ABB=inner_product((SB, 0), (SB, 2)),
            BBB=inner_product((SB, 0), (SB, 0)),
            SBB=inner_product((SB, 0), (SB, 4)),
            # Matrices for Helmholtz equation
            ADD=inner_product((ST, 0), (ST, 2)),
            BDD=inner_product((ST, 0), (ST, 0)),
            BBD=inner_product((SB, 0), (ST, 0)),
            CDB=inner_product((ST, 0), (SB, 1)),
            ADD0=inner_product((ST0, 0), (ST0, 2)),
            BDD0=inner_product((ST0, 0), (ST0, 0)),
        ))

    la = config.AttributeDict(
        dict(HelmholtzSolverG=Helmholtz(mat.ADD, mat.BDD, -np.ones((1, 1, 1)),
                                        (K2 + 2.0 / nu / dt)),
             BiharmonicSolverU=Biharmonic(mat.SBB, mat.ABB, mat.BBB,
                                          -nu * dt / 2. * np.ones(
                                              (1, 1, 1)), (1. + nu * dt * K2),
                                          (-(K2 + nu * dt / 2. * K4))),
             HelmholtzSolverU0=Helmholtz(mat.ADD0, mat.BDD0, np.array([-1.]),
                                         np.array([2. / nu / dt])),
             TDMASolverD=TDMA(inner_product((ST, 0), (ST, 0)))))

    hdf5file = KMMFile(config.params.solver,
                       checkpoint={
                           'space': VFS,
                           'data': {
                               '0': {
                                   'U': [U_hat]
                               },
                               '1': {
                                   'U': [U_hat0]
                               }
                           }
                       },
                       results={
                           'space': VFS,
                           'data': {
                               'U': [U]
                           }
                       })

    return config.AttributeDict(locals())