Пример #1
0
def test_cstat_rmfpha():
    """What does CSTAT calculate when there is an RMF+PHA instrument model.

    This includes the AREASCAL when evaluating the model.

    See Also
    --------
    test_cstat_nophamodel, test_cstat_arfpha, test_cstat_rsppha
    """

    dset, mdl, expected = setup_likelihood(scale=True)

    # use the full channel grid; the energy grid has to be
    # "the same" as the channel values since the model
    # has a dependency on the independent axis
    #
    egrid = 1.0 * np.concatenate((dset.channel, [dset.channel.max() + 1]))
    rmf = make_ideal_rmf(egrid[:-1], egrid[1:])

    mdl_ascal = RMFModelPHA(rmf, dset, mdl)

    stat = CStat()
    sval_ascal = stat.calc_stat(dset, mdl_ascal)

    assert_allclose(sval_ascal[0], expected)
def test_rmfmodelpha_delta_call(ignore):
    """What happens calling an rmf (delta) with a pha?

    The ignore value gives the channel to ignore (counting from 0).
    """

    exposure = 200.1
    estep = 0.025
    egrid = np.arange(0.1, 0.8, estep)
    elo = egrid[:-1]
    ehi = egrid[1:]
    rdata = create_delta_rmf(elo, ehi, e_min=elo, e_max=ehi)
    nchans = elo.size

    constant = 2.3
    mdl = Const1D('flat')
    mdl.c0 = constant

    channels = np.arange(1, nchans + 1, dtype=np.int16)
    counts = np.ones(nchans, dtype=np.int16)
    pha = DataPHA('test-pha',
                  channel=channels,
                  counts=counts,
                  exposure=exposure)
    pha.set_rmf(rdata)

    # force energy units (only needed if ignore is set)
    pha.set_analysis('energy')

    if ignore is not None:
        de = estep * 0.9
        e0 = egrid[ignore]
        pha.notice(lo=e0, hi=e0 + de, ignore=True)

        # The assert are intended to help people reading this
        # code rather than being a useful check that the code
        # is working.
        mask = [True] * nchans
        mask[ignore] = False
        assert (pha.mask == mask).all()

    wrapped = RMFModelPHA(rdata, pha, mdl)

    # The model is evaluated on the RMF grid, not whatever
    # is sent in. It is also integrated across the bins,
    # which is why there is a multiplication by the
    # grid width (for this constant model).
    #
    # Note that the filter doesn't change the grid.
    #
    de = egrid[1:] - egrid[:-1]
    expected = constant * de
    out = wrapped([4, 5])
    assert_allclose(out, expected)
def test_rmfmodelpha_matrix_call(ignore):
    """What happens calling an rmf (matrix) with a pha?

    The ignore value gives the channel to ignore (counting from 0).
    """

    exposure = 200.1
    rdata = create_non_delta_rmf()
    elo = rdata.e_min
    ehi = rdata.e_max
    nchans = elo.size

    constant = 12.2
    slope = 0.01
    mdl = Polynom1D('not-flat')
    mdl.c0 = constant
    mdl.c1 = slope

    channels = np.arange(1, nchans + 1, dtype=np.int16)
    counts = np.ones(nchans, dtype=np.int16)
    pha = DataPHA('test-pha',
                  channel=channels,
                  counts=counts,
                  exposure=exposure)
    pha.set_rmf(rdata)

    # force energy units (only needed if ignore is set)
    pha.set_analysis('energy')

    if ignore is not None:
        e0 = elo[ignore]
        e1 = ehi[ignore]
        de = 0.9 * (e1 - e0)
        pha.notice(lo=e0, hi=e0 + de, ignore=True)

        # The assert are intended to help people reading this
        # code rather than being a useful check that the code
        # is working.
        mask = [True] * nchans
        mask[ignore] = False
        assert (pha.mask == mask).all()

    wrapped = RMFModelPHA(rdata, pha, mdl)

    # Note that the evaluation ignores any filter we've applied.
    # and the exposure time is not used.
    #
    modvals = mdl(rdata.energ_lo, rdata.energ_hi)
    matrix = get_non_delta_matrix()
    expected = np.matmul(modvals, matrix)

    out = wrapped([4, 5])
    assert_allclose(out, expected)
def test_rmf1d_delta_pha_zero_energy_bin():
    "What happens when the first bin starts at 0, with replacement"

    ethresh = 2e-7

    egrid = np.asarray([0.0, 0.1, 0.2, 0.4, 0.5, 0.7, 0.8])
    elo = egrid[:-1]
    ehi = egrid[1:]

    with warnings.catch_warnings(record=True) as ws:
        warnings.simplefilter("always")
        rdata = create_delta_rmf(elo, ehi, ethresh=ethresh)

    validate_zero_replacement(ws, 'RMF', 'delta-rmf', ethresh)

    exposure = 2.4
    channels = np.arange(1, 7, dtype=np.int16)
    counts = np.ones(6, dtype=np.int16)
    pha = DataPHA('test-pha',
                  channel=channels,
                  counts=counts,
                  exposure=exposure)
    pha.set_rmf(rdata)

    pha.set_analysis('energy')

    mdl = MyPowLaw1D()
    tmdl = PowLaw1D()

    wrapped = RMFModelPHA(rdata, pha, mdl)

    out = wrapped([0.1, 0.2])

    elo[0] = ethresh
    expected = tmdl(elo, ehi)

    assert_allclose(out, expected)
    assert not np.isnan(out[0])