def init_from_checkpoint(
        self,
        path: str,
        reset_best_ckpt: bool = False,
        reset_scheduler: bool = False,
        reset_optimizer: bool = False,
    ) -> None:
        """
        Initialize the trainer from a given checkpoint file.

        This checkpoint file contains not only model parameters, but also
        scheduler and optimizer states, see `self._save_checkpoint`.

        :param path: path to checkpoint
        :param reset_best_ckpt: reset tracking of the best checkpoint,
                                use for domain adaptation with a new dev
                                set or when using a new metric for fine-tuning.
        :param reset_scheduler: reset the learning rate scheduler, and do not
                                use the one stored in the checkpoint.
        :param reset_optimizer: reset the optimizer, and do not use the one
                                stored in the checkpoint.
        """
        model_checkpoint = load_checkpoint(path=path, use_cuda=self.use_cuda)

        # restore model and optimizer parameters
        self.model.load_state_dict(model_checkpoint["model_state"])

        if not reset_optimizer:
            self.optimizer.load_state_dict(model_checkpoint["optimizer_state"])
        else:
            self.logger.info("Reset optimizer.")

        if not reset_scheduler:
            if (model_checkpoint["scheduler_state"] is not None
                    and self.scheduler is not None):
                self.scheduler.load_state_dict(
                    model_checkpoint["scheduler_state"])
        else:
            self.logger.info("Reset scheduler.")

        # restore counts
        self.steps = model_checkpoint["steps"]
        self.total_txt_tokens = model_checkpoint["total_txt_tokens"]
        self.total_gls_tokens = model_checkpoint["total_gls_tokens"]

        if not reset_best_ckpt:
            self.best_ckpt_score = model_checkpoint["best_ckpt_score"]
            self.best_all_ckpt_scores = model_checkpoint[
                "best_all_ckpt_scores"]
            self.best_ckpt_iteration = model_checkpoint["best_ckpt_iteration"]
        else:
            self.logger.info("Reset tracking of the best checkpoint.")

        # move parameters to cuda
        if self.use_cuda:
            self.model.cuda()
Пример #2
0
def feat_test(cfg_file,
              ckpt: str,
              output_path: str = None,
              logger: logging.Logger = None) -> None:
    """
    Main test function. Handles loading a model from checkpoint, generating
    translations and storing them and attention plots.

    :param cfg_file: path to configuration file
    :param ckpt: path to checkpoint to load
    :param output_path: path to output
    :param logger: log output to this logger (creates new logger if not set)
    """

    if logger is None:
        logger = logging.getLogger(__name__)
        if not logger.handlers:
            FORMAT = "%(asctime)-15s - %(message)s"
            logging.basicConfig(format=FORMAT)
            logger.setLevel(level=logging.DEBUG)

    cfg = load_config(cfg_file)

    if "test" not in cfg["data"].keys():
        raise ValueError("Test data must be specified in config.")

    # when checkpoint is not specified, take latest (best) from model dir
    if ckpt is None:
        model_dir = cfg["training"]["model_dir"]
        ckpt = get_latest_checkpoint(model_dir)
        if ckpt is None:
            raise FileNotFoundError(
                "No checkpoint found in directory {}.".format(model_dir))

    batch_size = cfg["training"]["batch_size"]
    batch_type = cfg["training"].get("batch_type", "sentence")
    use_cuda = cfg["training"].get("use_cuda", False)
    level = cfg["data"]["level"]
    dataset_version = cfg["data"].get("version", "phoenix_2014_trans")
    translation_max_output_length = cfg["training"].get(
        "translation_max_output_length", None)

    # load dev data
    do_anchoring = cfg["training"].get("anchoring_loss_weight", 1.0) > 0.0
    _, dev_data, _, gls_vocab, txt_vocab = load_feat_data(
        data_cfg=cfg["data"],
        sets=['dev'],
        dev_size=1,
        do_anchoring=do_anchoring)

    # load model state from disk
    model_checkpoint = load_checkpoint(ckpt, use_cuda=use_cuda)

    # build model and load parameters into it
    do_recognition = cfg["training"].get("recognition_loss_weight", 1.0) > 0.0
    do_translation = cfg["training"].get("translation_loss_weight", 1.0) > 0.0
    model = build_feat_model(cfg=cfg["model"],
                             gls_vocab=gls_vocab,
                             txt_vocab=txt_vocab,
                             sgn_dim=sum(cfg["data"]["feature_size"])
                             if isinstance(cfg["data"]["feature_size"], list)
                             else cfg["data"]["feature_size"],
                             do_recognition=do_recognition,
                             do_translation=do_translation,
                             do_anchoring=do_anchoring)
    model.load_state_dict(model_checkpoint["model_state"])

    if use_cuda:
        model.cuda()

    # Data Augmentation Parameters
    frame_subsampling_ratio = cfg["data"].get("frame_subsampling_ratio", None)
    # Note (Cihan): we are not using 'random_frame_subsampling' and
    #   'random_frame_masking_ratio' in testing as they are just for training.

    # whether to use beam search for decoding, 0: greedy decoding
    if "testing" in cfg.keys():
        recognition_beam_sizes = cfg["testing"].get("recognition_beam_sizes",
                                                    [1])
        translation_beam_sizes = cfg["testing"].get("translation_beam_sizes",
                                                    [1])
        translation_beam_alphas = cfg["testing"].get("translation_beam_alphas",
                                                     [-1])
    else:
        recognition_beam_sizes = [1]
        translation_beam_sizes = [1]
        translation_beam_alphas = [-1]

    if "testing" in cfg.keys():
        max_recognition_beam_size = cfg["testing"].get(
            "max_recognition_beam_size", None)
        if max_recognition_beam_size is not None:
            recognition_beam_sizes = list(
                range(1, max_recognition_beam_size + 1))

    if do_recognition:
        recognition_loss_function = torch.nn.CTCLoss(
            blank=model.gls_vocab.stoi[SIL_TOKEN], zero_infinity=True)
        if use_cuda:
            recognition_loss_function.cuda()
    if do_translation:
        translation_loss_function = XentLoss(
            pad_index=txt_vocab.stoi[PAD_TOKEN], smoothing=0.0)
        if use_cuda:
            translation_loss_function.cuda()
    if do_anchoring:
        anchoring_loss_function = AnchoringLoss()
        if use_cuda:
            anchoring_loss_function.cuda()

    # NOTE (Cihan): Currently Hardcoded to be 0 for TensorFlow decoding
    assert model.gls_vocab.stoi[SIL_TOKEN] == 0

    if do_recognition:
        # Dev Recognition CTC Beam Search Results
        dev_recognition_results = {}
        dev_best_wer_score = float("inf")
        dev_best_recognition_beam_size = 1
        for rbw in recognition_beam_sizes:
            logger.info("-" * 60)
            valid_start_time = time.time()
            logger.info("[DEV] partition [RECOGNITION] experiment [BW]: %d",
                        rbw)
            dev_recognition_results[rbw] = validate_on_feat_data(
                model=model,
                data=dev_data,
                batch_size=batch_size,
                use_cuda=use_cuda,
                batch_type=batch_type,
                dataset_version=dataset_version,
                sgn_dim=sum(cfg["data"]["feature_size"]) if isinstance(
                    cfg["data"]["feature_size"], list) else
                cfg["data"]["feature_size"],
                txt_pad_index=txt_vocab.stoi[PAD_TOKEN],
                # Recognition Parameters
                do_recognition=do_recognition,
                recognition_loss_function=recognition_loss_function,
                recognition_loss_weight=1,
                recognition_beam_size=rbw,
                # Translation Parameters
                do_translation=do_translation,
                translation_loss_function=translation_loss_function
                if do_translation else None,
                translation_loss_weight=1 if do_translation else None,
                translation_max_output_length=translation_max_output_length
                if do_translation else None,
                level=level if do_translation else None,
                translation_beam_size=1 if do_translation else None,
                translation_beam_alpha=-1 if do_translation else None,
                frame_subsampling_ratio=frame_subsampling_ratio,
            )
            logger.info("finished in %.4fs ", time.time() - valid_start_time)
            if dev_recognition_results[rbw]["valid_scores"][
                    "wer"] < dev_best_wer_score:
                dev_best_wer_score = dev_recognition_results[rbw][
                    "valid_scores"]["wer"]
                dev_best_recognition_beam_size = rbw
                dev_best_recognition_result = dev_recognition_results[rbw]
                logger.info("*" * 60)
                logger.info(
                    "[DEV] partition [RECOGNITION] results:\n\t"
                    "New Best CTC Decode Beam Size: %d\n\t"
                    "WER %3.2f\t(DEL: %3.2f,\tINS: %3.2f,\tSUB: %3.2f)",
                    dev_best_recognition_beam_size,
                    dev_best_recognition_result["valid_scores"]["wer"],
                    dev_best_recognition_result["valid_scores"]["wer_scores"]
                    ["del_rate"],
                    dev_best_recognition_result["valid_scores"]["wer_scores"]
                    ["ins_rate"],
                    dev_best_recognition_result["valid_scores"]["wer_scores"]
                    ["sub_rate"],
                )
                logger.info("*" * 60)

    if do_translation:
        logger.info("=" * 60)
        dev_translation_results = {}
        dev_best_bleu_score = float("-inf")
        dev_best_translation_beam_size = 1
        dev_best_translation_alpha = 1
        for tbw in translation_beam_sizes:
            dev_translation_results[tbw] = {}
            for ta in translation_beam_alphas:
                dev_translation_results[tbw][ta] = validate_on_feat_data(
                    model=model,
                    data=dev_data,
                    batch_size=batch_size,
                    use_cuda=use_cuda,
                    level=level,
                    sgn_dim=sum(cfg["data"]["feature_size"]) if isinstance(
                        cfg["data"]["feature_size"], list) else
                    cfg["data"]["feature_size"],
                    batch_type=batch_type,
                    dataset_version=dataset_version,
                    do_recognition=do_recognition,
                    recognition_loss_function=recognition_loss_function
                    if do_recognition else None,
                    recognition_loss_weight=1 if do_recognition else None,
                    recognition_beam_size=1 if do_recognition else None,
                    do_translation=do_translation,
                    translation_loss_function=translation_loss_function,
                    translation_loss_weight=1,
                    translation_max_output_length=translation_max_output_length,
                    txt_pad_index=txt_vocab.stoi[PAD_TOKEN],
                    translation_beam_size=tbw,
                    translation_beam_alpha=ta,
                    frame_subsampling_ratio=frame_subsampling_ratio,
                    do_anchoring=do_anchoring,
                    anchoring_loss_function=anchoring_loss_function
                    if do_anchoring else None,
                    anchoring_loss_weight=1 if do_anchoring else None,
                )

                if (dev_translation_results[tbw][ta]["valid_scores"]["bleu"] >
                        dev_best_bleu_score):
                    dev_best_bleu_score = dev_translation_results[tbw][ta][
                        "valid_scores"]["bleu"]
                    dev_best_translation_beam_size = tbw
                    dev_best_translation_alpha = ta
                    dev_best_translation_result = dev_translation_results[tbw][
                        ta]
                    logger.info(
                        "[DEV] partition [Translation] results:\n\t"
                        "New Best Translation Beam Size: %d and Alpha: %d\n\t"
                        "BLEU-4 %.2f\t(BLEU-1: %.2f,\tBLEU-2: %.2f,\tBLEU-3: %.2f,\tBLEU-4: %.2f)\n\t"
                        "CHRF %.2f\t"
                        "ROUGE %.2f",
                        dev_best_translation_beam_size,
                        dev_best_translation_alpha,
                        dev_best_translation_result["valid_scores"]["bleu"],
                        dev_best_translation_result["valid_scores"]
                        ["bleu_scores"]["bleu1"],
                        dev_best_translation_result["valid_scores"]
                        ["bleu_scores"]["bleu2"],
                        dev_best_translation_result["valid_scores"]
                        ["bleu_scores"]["bleu3"],
                        dev_best_translation_result["valid_scores"]
                        ["bleu_scores"]["bleu4"],
                        dev_best_translation_result["valid_scores"]["chrf"],
                        dev_best_translation_result["valid_scores"]["rouge"],
                    )
                    logger.info("-" * 60)

    logger.info("*" * 60)
    logger.info(
        "[DEV] partition [Recognition & Translation] results:\n\t"
        "Best CTC Decode Beam Size: %d\n\t"
        "Best Translation Beam Size: %d and Alpha: %d\n\t"
        "WER %3.2f\t(DEL: %3.2f,\tINS: %3.2f,\tSUB: %3.2f)\n\t"
        "BLEU-4 %.2f\t(BLEU-1: %.2f,\tBLEU-2: %.2f,\tBLEU-3: %.2f,\tBLEU-4: %.2f)\n\t"
        "CHRF %.2f\t"
        "ROUGE %.2f",
        dev_best_recognition_beam_size if do_recognition else -1,
        dev_best_translation_beam_size if do_translation else -1,
        dev_best_translation_alpha if do_translation else -1,
        dev_best_recognition_result["valid_scores"]["wer"]
        if do_recognition else -1,
        dev_best_recognition_result["valid_scores"]["wer_scores"]["del_rate"]
        if do_recognition else -1,
        dev_best_recognition_result["valid_scores"]["wer_scores"]["ins_rate"]
        if do_recognition else -1,
        dev_best_recognition_result["valid_scores"]["wer_scores"]["sub_rate"]
        if do_recognition else -1,
        dev_best_translation_result["valid_scores"]["bleu"]
        if do_translation else -1,
        dev_best_translation_result["valid_scores"]["bleu_scores"]["bleu1"]
        if do_translation else -1,
        dev_best_translation_result["valid_scores"]["bleu_scores"]["bleu2"]
        if do_translation else -1,
        dev_best_translation_result["valid_scores"]["bleu_scores"]["bleu3"]
        if do_translation else -1,
        dev_best_translation_result["valid_scores"]["bleu_scores"]["bleu4"]
        if do_translation else -1,
        dev_best_translation_result["valid_scores"]["chrf"]
        if do_translation else -1,
        dev_best_translation_result["valid_scores"]["rouge"]
        if do_translation else -1,
    )
    logger.info("*" * 60)

    def _write_to_file(file_path: str, sequence_ids: List[str],
                       hypotheses: List[str]):
        with open(file_path, mode="w", encoding="utf-8") as out_file:
            for seq, hyp in zip(sequence_ids, hypotheses):
                out_file.write(seq + "|" + hyp + "\n")

    if output_path is not None:
        if do_recognition:
            dev_gls_output_path_set = "{}.BW_{:03d}.{}.gls".format(
                output_path, dev_best_recognition_beam_size, "dev")
            _write_to_file(
                dev_gls_output_path_set,
                [s for s in dev_data.sequence],
                dev_best_recognition_result["gls_hyp"],
            )
        if do_translation:
            if dev_best_translation_beam_size > -1:
                dev_txt_output_path_set = "{}.BW_{:02d}.A_{:1d}.{}.txt".format(
                    output_path,
                    dev_best_translation_beam_size,
                    dev_best_translation_alpha,
                    "dev",
                )
            else:
                dev_txt_output_path_set = "{}.BW_{:02d}.{}.txt".format(
                    output_path, dev_best_translation_beam_size, "dev")
            _write_to_file(
                dev_txt_output_path_set,
                [s for s in dev_data.sequence],
                dev_best_translation_result["txt_hyp"],
            )

    del dev_data

    # load dev data
    _, _, test_data, gls_vocab, txt_vocab = load_feat_data(
        data_cfg=cfg["data"],
        sets=['test'],
        dev_size=1,
        do_anchoring=do_anchoring)

    test_best_result = validate_on_feat_data(
        model=model,
        data=test_data,
        batch_size=batch_size,
        use_cuda=use_cuda,
        batch_type=batch_type,
        dataset_version=dataset_version,
        sgn_dim=sum(cfg["data"]["feature_size"]) if isinstance(
            cfg["data"]["feature_size"], list) else
        cfg["data"]["feature_size"],
        txt_pad_index=txt_vocab.stoi[PAD_TOKEN],
        do_recognition=do_recognition,
        recognition_loss_function=recognition_loss_function
        if do_recognition else None,
        recognition_loss_weight=1 if do_recognition else None,
        recognition_beam_size=dev_best_recognition_beam_size
        if do_recognition else None,
        do_translation=do_translation,
        translation_loss_function=translation_loss_function
        if do_translation else None,
        translation_loss_weight=1 if do_translation else None,
        translation_max_output_length=translation_max_output_length
        if do_translation else None,
        level=level if do_translation else None,
        translation_beam_size=dev_best_translation_beam_size
        if do_translation else None,
        translation_beam_alpha=dev_best_translation_alpha
        if do_translation else None,
        frame_subsampling_ratio=frame_subsampling_ratio,
        do_anchoring=do_anchoring,
        anchoring_loss_function=anchoring_loss_function
        if do_anchoring else None,
        anchoring_loss_weight=1 if do_anchoring else None,
    )

    logger.info(
        "[TEST] partition [Recognition & Translation] results:\n\t"
        "Best CTC Decode Beam Size: %d\n\t"
        "Best Translation Beam Size: %d and Alpha: %d\n\t"
        "WER %3.2f\t(DEL: %3.2f,\tINS: %3.2f,\tSUB: %3.2f)\n\t"
        "BLEU-4 %.2f\t(BLEU-1: %.2f,\tBLEU-2: %.2f,\tBLEU-3: %.2f,\tBLEU-4: %.2f)\n\t"
        "CHRF %.2f\t"
        "ROUGE %.2f",
        dev_best_recognition_beam_size if do_recognition else -1,
        dev_best_translation_beam_size if do_translation else -1,
        dev_best_translation_alpha if do_translation else -1,
        test_best_result["valid_scores"]["wer"] if do_recognition else -1,
        test_best_result["valid_scores"]["wer_scores"]["del_rate"]
        if do_recognition else -1,
        test_best_result["valid_scores"]["wer_scores"]["ins_rate"]
        if do_recognition else -1,
        test_best_result["valid_scores"]["wer_scores"]["sub_rate"]
        if do_recognition else -1,
        test_best_result["valid_scores"]["bleu"] if do_translation else -1,
        test_best_result["valid_scores"]["bleu_scores"]["bleu1"]
        if do_translation else -1,
        test_best_result["valid_scores"]["bleu_scores"]["bleu2"]
        if do_translation else -1,
        test_best_result["valid_scores"]["bleu_scores"]["bleu3"]
        if do_translation else -1,
        test_best_result["valid_scores"]["bleu_scores"]["bleu4"]
        if do_translation else -1,
        test_best_result["valid_scores"]["chrf"] if do_translation else -1,
        test_best_result["valid_scores"]["rouge"] if do_translation else -1,
    )
    logger.info("*" * 60)

    if output_path is not None:
        if do_recognition:
            test_gls_output_path_set = "{}.BW_{:03d}.{}.gls".format(
                output_path, dev_best_recognition_beam_size, "test")
            _write_to_file(
                test_gls_output_path_set,
                [s for s in test_data.sequence],
                test_best_result["gls_hyp"],
            )

        if do_translation:
            if dev_best_translation_beam_size > -1:
                test_txt_output_path_set = "{}.BW_{:02d}.A_{:1d}.{}.txt".format(
                    output_path,
                    dev_best_translation_beam_size,
                    dev_best_translation_alpha,
                    "test",
                )
            else:
                test_txt_output_path_set = "{}.BW_{:02d}.{}.txt".format(
                    output_path, dev_best_translation_beam_size, "test")
            _write_to_file(
                test_txt_output_path_set,
                [s for s in test_data.sequence],
                test_best_result["txt_hyp"],
            )
        with open(output_path + ".dev_results.pkl", "wb") as out:
            pickle.dump(
                {
                    "recognition_results":
                    dev_recognition_results if do_recognition else None,
                    "translation_results":
                    dev_translation_results if do_translation else None,
                },
                out,
            )
        with open(output_path + ".test_results.pkl", "wb") as out:
            pickle.dump(test_best_result, out)