Пример #1
0
    def test_convolve_adjoint_input_full(self):
        mode = 'full'
        devices = [backend.cpu_device]
        if config.cupy_enabled:
            devices.append(backend.Device(0))
            
        for device in devices:
            xp = device.xp
            with device:
                for dtype in [np.float32, np.float64, np.complex64, np.complex128]:
                    y = xp.ones([1, 5], dtype=dtype)
                    W = xp.ones([1, 3], dtype=dtype)
                    x = backend.to_device(conv.convolve_adjoint_input(W, y, mode=mode), backend.cpu_device)
                    npt.assert_allclose(x, [[3, 3, 3]], atol=1e-5)

                    y = xp.ones([1, 4], dtype=dtype)
                    W = xp.ones([1, 2], dtype=dtype)
                    x = backend.to_device(conv.convolve_adjoint_input(W, y, mode=mode),
                                       backend.cpu_device)
                    npt.assert_allclose(x, [[2, 2, 2]], atol=1e-5)

                    y = xp.ones([2, 1, 5], dtype=dtype)
                    W = xp.ones([2, 1, 3], dtype=dtype)
                    x = backend.to_device(conv.convolve_adjoint_input(W, y, mode=mode,
                                                                   output_multi_channel=True),
                                       backend.cpu_device)
                    npt.assert_allclose(x, [[6, 6, 6]], atol=1e-5)
Пример #2
0
    def test_convolve_valid(self):
        mode = 'valid'
        devices = [backend.cpu_device]
        if config.cupy_enabled:
            devices.append(backend.Device(0))

        for D in [1, 2, 3]:
            for device in devices:
                xp = device.xp
                with device:
                    for dtype in dtypes:
                        with self.subTest(D=D, dtype=dtype, device=device):
                            data = util.dirac([3] + [1] * (D - 1),
                                              device=device, dtype=dtype)
                            filt = xp.ones([3] + [1] * (D - 1), dtype=dtype)
                            output = backend.to_device(conv.convolve(
                                data, filt, mode=mode))
                            npt.assert_allclose(
                                output,
                                np.ones([1] * D), atol=1e-5)

                            data = util.dirac([3] + [1] * (D - 1),
                                              device=device, dtype=dtype)
                            filt = xp.ones([2] + [1] * (D - 1), dtype=dtype)
                            output = backend.to_device(conv.convolve(
                                data, filt, mode=mode))
                            npt.assert_allclose(
                                output,
                                np.ones([2] + [1] * (D - 1)), atol=1e-5)

                            data = util.dirac([1, 3] + [1] * (D - 1),
                                              device=device,
                                              dtype=dtype)
                            filt = xp.ones([2, 1, 3] + [1] * (D - 1),
                                           dtype=dtype)
                            output = backend.to_device(
                                conv.convolve(data, filt,
                                              mode=mode,
                                              multi_channel=True),
                                backend.cpu_device)
                            npt.assert_allclose(
                                output,
                                np.ones([2, 1] + [1] * (D - 1)),
                                atol=1e-5)

                            data = util.dirac([1, 3] + [1] * (D - 1),
                                              device=device,
                                              dtype=dtype)
                            filt = xp.ones([2, 1, 3] + [1] * (D - 1),
                                           dtype=dtype)
                            strides = [2] + [1] * (D - 1)
                            output = backend.to_device(
                                conv.convolve(data, filt,
                                              mode=mode, strides=strides,
                                              multi_channel=True),
                                backend.cpu_device)
                            npt.assert_allclose(
                                output,
                                np.ones([2, 1] + [1] * (D - 1)),
                                atol=1e-5)
Пример #3
0
    def test_convolve_full(self):
        mode = 'full'
        devices = [backend.cpu_device]
        if config.cupy_enabled:
            devices.append(backend.Device(0))
            
        for device in devices:
            xp = device.xp
            with device:
                for dtype in [np.float32, np.float64, np.complex64, np.complex128]:
                    x = util.dirac([1, 3], device=device, dtype=dtype)
                    W = xp.ones([1, 3], dtype=dtype)
                    y = backend.to_device(conv.convolve(x, W, mode=mode), backend.cpu_device)
                    npt.assert_allclose(y, [[0, 1, 1, 1, 0]], atol=1e-5)

                    x = util.dirac([1, 3], device=device, dtype=dtype)
                    W = xp.ones([1, 2], dtype=dtype)
                    y = backend.to_device(conv.convolve(x, W, mode=mode), backend.cpu_device)
                    npt.assert_allclose(y, [[0, 1, 1, 0]], atol=1e-5)

                    x = util.dirac([1, 3], device=device, dtype=dtype)
                    W = xp.ones([2, 1, 3], dtype=dtype)
                    y = backend.to_device(conv.convolve(x, W, mode=mode,
                                                     output_multi_channel=True), backend.cpu_device)
                    npt.assert_allclose(y, [[[0, 1, 1, 1, 0]],
                                            [[0, 1, 1, 1, 0]]], atol=1e-5)
Пример #4
0
    def test_convolve_adjoint_filter_valid(self):
        mode = 'valid'
        devices = [backend.cpu_device]
        if config.cupy_enabled:
            devices.append(backend.Device(0))

        ndim = 2
        for device in devices:
            xp = device.xp
            with device:
                for dtype in [np.float32, np.float64, np.complex64, np.complex128]:
                    x = xp.ones([1, 3], dtype=dtype)
                    y = xp.ones([1, 1], dtype=dtype)
                    W = backend.to_device(conv.convolve_adjoint_filter(x, y, ndim, mode=mode),
                                       backend.cpu_device)
                    npt.assert_allclose(W, [[1, 1, 1]], atol=1e-5)

                    x = xp.ones([1, 3], dtype=dtype)
                    y = xp.ones([1, 2], dtype=dtype)
                    W = backend.to_device(conv.convolve_adjoint_filter(x, y, ndim, mode=mode),
                                       backend.cpu_device)
                    npt.assert_allclose(W, [[2, 2]], atol=1e-5)

                    x = xp.ones([1, 1, 3], dtype=dtype)
                    y = xp.ones([2, 1, 1], dtype=dtype)
                    W = backend.to_device(conv.convolve_adjoint_filter(x, y, ndim, mode=mode,
                                                                    output_multi_channel=True),
                                       backend.cpu_device)
                    npt.assert_allclose(W, [[[1, 1, 1]],
                                            [[1, 1, 1]]], atol=1e-5)
Пример #5
0
    def test_convolve_filter_adjoint_full(self):
        mode = 'full'
        devices = [backend.cpu_device]
        if config.cupy_enabled:
            devices.append(backend.Device(0))

        for device in devices:
            xp = device.xp
            with device:
                for dtype in dtypes:
                    with self.subTest(dtype=dtype, device=device):
                        data = xp.ones([1, 3], dtype=dtype)
                        output = xp.ones([1, 5], dtype=dtype)
                        filt_shape = [1, 3]
                        filt = backend.to_device(
                            conv.convolve_filter_adjoint(output,
                                                         data,
                                                         filt_shape,
                                                         mode=mode))
                        npt.assert_allclose(filt, [[3, 3, 3]], atol=1e-5)

                        data = xp.ones([1, 3], dtype=dtype)
                        output = xp.ones([1, 4], dtype=dtype)
                        filt_shape = [1, 2]
                        filt = backend.to_device(
                            conv.convolve_filter_adjoint(output,
                                                         data,
                                                         filt_shape,
                                                         mode=mode))
                        npt.assert_allclose(filt, [[3, 3]], atol=1e-5)

                        data = xp.ones([1, 1, 3], dtype=dtype)
                        output = xp.ones([2, 1, 5], dtype=dtype)
                        filt_shape = [2, 1, 1, 3]
                        filt = backend.to_device(
                            conv.convolve_filter_adjoint(output,
                                                         data,
                                                         filt_shape,
                                                         mode=mode,
                                                         multi_channel=True),
                            backend.cpu_device)
                        npt.assert_allclose(filt,
                                            [[[[3, 3, 3]]], [[[3, 3, 3]]]],
                                            atol=1e-5)

                        data = xp.ones([1, 1, 3], dtype=dtype)
                        output = xp.ones([2, 1, 3], dtype=dtype)
                        filt_shape = [2, 1, 1, 3]
                        strides = [1, 2]
                        filt = backend.to_device(
                            conv.convolve_filter_adjoint(output,
                                                         data,
                                                         filt_shape,
                                                         mode=mode,
                                                         strides=strides,
                                                         multi_channel=True),
                            backend.cpu_device)
                        npt.assert_allclose(filt,
                                            [[[[2, 1, 2]]], [[[2, 1, 2]]]],
                                            atol=1e-5)
Пример #6
0
def randn(shape, scale=1, dtype=np.float, device=backend.cpu_device):
    """Create random Gaussian array.

    Args:
        shape (tuple of ints): Output shape.
        scale (float): Standard deviation.
        dtype (Dtype): Output data-type.
        device (Device): Output device.

    Returns:
        array: Random Gaussian array.

    """
    device = backend.Device(device)
    xp = device.xp

    with device:
        if np.issubdtype(dtype, np.complexfloating):
            real_dtype = np.array([], dtype=dtype).real.dtype
            real_shape = tuple(shape) + (2, )
            output = xp.random.normal(size=real_shape, scale=scale / 2**0.5)
            output = output.astype(real_dtype)
            output = output.view(dtype=dtype).reshape(shape)
            return output
        else:
            return xp.random.normal(size=shape, scale=scale).astype(dtype)
Пример #7
0
def check_linop_unitary(A, dtype=np.float, device=backend.cpu_device):

    device = backend.Device(device)
    x = util.randn(A.ishape, dtype=dtype, device=device)

    xp = device.xp
    with device:
        xp.testing.assert_allclose(A.H * A * x, x, atol=1e-5, rtol=1e-5)
Пример #8
0
    def check_linop_normal(self, A, device=backend.cpu_device, dtype=np.float):
        device = backend.Device(device)
        x = util.randn(A.ishape, dtype=dtype, device=device)

        xp = device.xp
        with device:
            lhs = A.H * A * x
            rhs = A.N * x
            xp.testing.assert_allclose(lhs, rhs, atol=1e-2, rtol=1e-3)
Пример #9
0
    def test_convolve_data_adjoint_valid(self):
        mode = 'valid'
        devices = [backend.cpu_device]
        if config.cupy_enabled:
            devices.append(backend.Device(0))

        for device in devices:
            xp = device.xp
            with device:
                for dtype in dtypes:
                    with self.subTest(dtype=dtype, device=device):
                        output = xp.ones([1, 1], dtype=dtype)
                        filt = xp.ones([1, 3], dtype=dtype)
                        data_shape = [1, 3]
                        data = backend.to_device(
                            conv.convolve_data_adjoint(output,
                                                       filt,
                                                       data_shape,
                                                       mode=mode))
                        npt.assert_allclose(data, [[1, 1, 1]], atol=1e-5)

                        output = xp.ones([1, 2], dtype=dtype)
                        filt = xp.ones([1, 2], dtype=dtype)
                        data_shape = [1, 3]
                        data = backend.to_device(
                            conv.convolve_data_adjoint(output,
                                                       filt,
                                                       data_shape,
                                                       mode=mode))
                        npt.assert_allclose(data, [[1, 2, 1]], atol=1e-5)

                        output = xp.ones([2, 1, 1], dtype=dtype)
                        filt = xp.ones([2, 1, 1, 3], dtype=dtype)
                        data_shape = [1, 1, 3]
                        data = backend.to_device(
                            conv.convolve_data_adjoint(output,
                                                       filt,
                                                       data_shape,
                                                       mode=mode,
                                                       multi_channel=True),
                            backend.cpu_device)
                        npt.assert_allclose(data, [[[2, 2, 2]]], atol=1e-5)

                        output = xp.ones([2, 1, 1], dtype=dtype)
                        filt = xp.ones([2, 1, 1, 3], dtype=dtype)
                        data_shape = [1, 1, 4]
                        strides = [1, 2]
                        data = backend.to_device(
                            conv.convolve_data_adjoint(output,
                                                       filt,
                                                       data_shape,
                                                       mode=mode,
                                                       strides=strides,
                                                       multi_channel=True),
                            backend.cpu_device)
                        npt.assert_allclose(data, [[[2, 2, 2, 0]]], atol=1e-5)
Пример #10
0
 def check_linop_unitary(self, A, devices=devices, dtypes=dtypes):
     for device in devices:
         for dtype in dtypes:
             with self.subTest(A=A, dtype=dtype, device=device):
                 device = backend.Device(device)
                 x = util.randn(A.ishape, dtype=dtype, device=device)
                 xp = device.xp
                 with device:
                     xp.testing.assert_allclose(A.H * A * x,
                                                x,
                                                atol=1e-5,
                                                rtol=1e-5)
Пример #11
0
def check_linop_adjoint(A, dtype=np.float, device=backend.cpu_device):

    device = backend.Device(device)
    x = util.randn(A.ishape, dtype=dtype, device=device)
    y = util.randn(A.oshape, dtype=dtype, device=device)

    xp = device.xp
    with device:
        lhs = xp.vdot(A * x, y)
        rhs = xp.vdot(x, A.H * y)

        xp.testing.assert_allclose(lhs, rhs, atol=1e-5, rtol=1e-5)
Пример #12
0
    def check_linop_linear(self, A, device=backend.cpu_device, dtype=np.float):
        device = backend.Device(device)
        a = util.randn([1], dtype=dtype, device=device)
        x = util.randn(A.ishape, dtype=dtype, device=device)
        y = util.randn(A.ishape, dtype=dtype, device=device)

        xp = device.xp
        with device:
            xp.testing.assert_allclose(A(a * x + y),
                                       a * A(x) + A(y),
                                       atol=1e-5,
                                       rtol=1e-5)
Пример #13
0
    def test_convolve_full(self):
        mode = 'full'
        devices = [backend.cpu_device]
        if config.cupy_enabled:
            devices.append(backend.Device(0))
            dtypes = [np.float32, np.float64, np.complex64, np.complex128]

        for device in devices:
            xp = device.xp
            with device:
                for dtype in dtypes:
                    with self.subTest(dtype=dtype, device=device):
                        data = util.dirac([1, 3], device=device, dtype=dtype)
                        filt = xp.ones([1, 3], dtype=dtype)
                        output = backend.to_device(
                            conv.convolve(data, filt, mode=mode))
                        npt.assert_allclose(output, [[0, 1, 1, 1, 0]],
                                            atol=1e-5)

                        data = util.dirac([1, 3], device=device, dtype=dtype)
                        filt = xp.ones([1, 2], dtype=dtype)
                        output = backend.to_device(
                            conv.convolve(data, filt, mode=mode))
                        npt.assert_allclose(output, [[0, 1, 1, 0]], atol=1e-5)

                        data = util.dirac([1, 1, 3],
                                          device=device,
                                          dtype=dtype)
                        filt = xp.ones([2, 1, 1, 3], dtype=dtype)
                        output = backend.to_device(
                            conv.convolve(data,
                                          filt,
                                          mode=mode,
                                          multi_channel=True),
                            backend.cpu_device)
                        npt.assert_allclose(
                            output, [[[0, 1, 1, 1, 0]], [[0, 1, 1, 1, 0]]],
                            atol=1e-5)

                        data = util.dirac([1, 1, 3],
                                          device=device,
                                          dtype=dtype)
                        filt = xp.ones([2, 1, 1, 3], dtype=dtype)
                        strides = [1, 2]
                        output = backend.to_device(
                            conv.convolve(data,
                                          filt,
                                          mode=mode,
                                          strides=strides,
                                          multi_channel=True))
                        npt.assert_allclose(output, [[[0, 1, 0]], [[0, 1, 0]]],
                                            atol=1e-5)
Пример #14
0
    def check_linop_linear(self, A, devices=devices, dtypes=dtypes):
        for device in devices:
            for dtype in dtypes:
                with self.subTest(A=A, dtype=dtype, device=device):
                    device = backend.Device(device)
                    a = util.randn([1], dtype=dtype, device=device)
                    x = util.randn(A.ishape, dtype=dtype, device=device)
                    y = util.randn(A.ishape, dtype=dtype, device=device)

                    xp = device.xp
                    with device:
                        xp.testing.assert_allclose(A(a * x + y),
                                                   a * A(x) + A(y),
                                                   atol=1e-5,
                                                   rtol=1e-5)
Пример #15
0
    def check_linop_adjoint(self, A, devices=devices, dtypes=dtypes):
        for device in devices:
            for dtype in dtypes:
                with self.subTest(A=A, dtype=dtype, device=device):
                    device = backend.Device(device)
                    x = util.randn(A.ishape, dtype=dtype, device=device)
                    y = util.randn(A.oshape, dtype=dtype, device=device)

                    xp = device.xp
                    with device:
                        lhs = xp.vdot(A * x, y)
                        rhs = xp.vdot(x, A.H * y)

                        xp.testing.assert_allclose(lhs,
                                                   rhs,
                                                   atol=1e-5,
                                                   rtol=1e-5)
Пример #16
0
def dirac(shape, dtype=np.float, device=backend.cpu_device):
    """Create Dirac delta.

    Args:
        shape (tuple of ints): Output shape.
        dtype (Dtype): Output data-type.
        device (Device): Output device.

    Returns:
        array: Dirac delta array.
    """

    device = backend.Device(device)
    xp = device.xp

    with device:
        return resize(xp.ones([1], dtype=dtype), shape)
Пример #17
0
    def test_ConvolveFilter(self):
        devices = [backend.cpu_device]
        if config.cupy_enabled:
            devices.append(backend.Device(0))
        for device in devices:
            for mode in ['full', 'valid']:
                W_shape = [2, 3]
                x = util.randn([3, 4], device=device)
                A = linop.ConvolveFilter(W_shape, x, mode=mode)
                check_linop_linear(A, device=device)
                check_linop_adjoint(A, device=device)
                check_linop_pickleable(A)

                W_shape = [4, 2, 3]
                x = util.randn([4, 3, 4], device=device)
                A = linop.ConvolveFilter(W_shape,
                                         x,
                                         mode=mode,
                                         input_multi_channel=True)
                check_linop_linear(A, device=device)
                check_linop_adjoint(A, device=device)
                check_linop_pickleable(A)

                W_shape = [4, 2, 3]
                x = util.randn([3, 4], device=device)
                A = linop.ConvolveFilter(W_shape,
                                         x,
                                         mode=mode,
                                         output_multi_channel=True)
                check_linop_linear(A, device=device)
                check_linop_adjoint(A, device=device)
                check_linop_pickleable(A)

                W_shape = [4, 2, 2, 3]
                x = util.randn([2, 3, 4], device=device)
                A = linop.ConvolveFilter(W_shape,
                                         x,
                                         mode=mode,
                                         input_multi_channel=True,
                                         output_multi_channel=True)
                check_linop_linear(A, device=device)
                check_linop_adjoint(A, device=device)
                check_linop_pickleable(A)
Пример #18
0
def _get_kaiser_bessel_kernel(n, width, beta, dtype, device):
    """Precompute Kaiser Bessel kernel.

    Precomputes Kaiser-Bessel kernel with n points.

    Args:
        n (int): number of sampling points.
        width (float): kernel width.
        beta (float): kaiser bessel parameter.
        dtype (dtype): output data type.
        device (Device): output device.

    Returns:
        array: Kaiser-Bessel kernel table.

    """
    device = backend.Device(device)
    xp = device.xp
    with device:
        x = xp.arange(n, dtype=dtype) / n
        kernel = 1 / width * xp.i0(beta * (1 - x**2)**0.5).astype(dtype)
        return kernel
Пример #19
0
def hanning(shape, dtype=np.float, device=backend.cpu_device):
    """Create multi-dimensional hanning window.

    Args:
        shape (tuple of ints): Output shape.
        dtype (Dtype): Output data-type.
        device (Device): Output device.

    Returns:
        array: hanning filter.

    """
    device = backend.Device(device)
    xp = device.xp
    shape = _normalize_shape(shape)
    with device:
        window = xp.ones(shape, dtype=dtype)
        for n, i in enumerate(shape[::-1]):
            x = xp.arange(i, dtype=dtype)
            w = 0.5 - 0.5 * xp.cos(2 * np.pi * x / max(1, (i - (i % 2))))
            window *= w.reshape([i] + [1] * n)

    return window
Пример #20
0
def triang(shape, dtype=np.float, device=backend.cpu_device):
    """Create multi-dimensional triangular window.

    Args:
        shape (tuple of ints): Output shape.
        dtype (Dtype): Output data-type.
        device (Device): Output device.

    Returns:
        array: triangular filter.

    """
    device = backend.Device(device)
    xp = device.xp
    shape = _normalize_shape(shape)
    with device:
        window = xp.ones(shape, dtype=dtype)
        for n, i in enumerate(shape[::-1]):
            x = xp.arange(i, dtype=dtype)
            w = 1 - xp.abs(x - i // 2 + ((i + 1) % 2) / 2) / ((i + 1) // 2)
            window *= w.reshape([i] + [1] * n)

    return window
Пример #21
0
 def test_device(self):
     device = backend.Device(-1)
     pickle.dumps(device)
Пример #22
0
import unittest
import numpy as np
import numpy.testing as npt
from sigpy import backend, config, linop, pytorch


if config.pytorch_enabled:
    import torch

    if __name__ == '__main__':
        unittest.main()

    devices = [backend.cpu_device]
    if config.cupy_enabled:
        devices.append(backend.Device(0))

    class TestPytorch(unittest.TestCase):

        def test_to_pytorch(self):
            for dtype in [np.float32, np.float64]:
                for device in devices:
                    with self.subTest(device=device, dtype=dtype):
                        xp = device.xp
                        array = xp.array([1, 2, 3], dtype=dtype)
                        tensor = pytorch.to_pytorch(array)
                        tensor[0] = 0
                        xp.testing.assert_allclose(array, [0, 2, 3])

        def test_to_pytorch_complex(self):
            for dtype in [np.complex64, np.complex128]:
                for device in devices: