Пример #1
0
    def test_ones_JsenseRecon(self):
        img_shape = [6, 6]
        mps_shape = [4, 6, 6]

        img = np.ones(img_shape, dtype=np.complex)
        mps = sim.birdcage_maps(mps_shape)
        ksp = sp.fft(mps * img, axes=[-2, -1])

        _app = app.JsenseRecon(ksp, mps_ker_width=6, ksp_calib_width=6)
        mps_rec = _app.run()

        npt.assert_allclose(mps, mps_rec, atol=1e-3, rtol=1e-3)
def process_slice(kspace, args, calib_method='jsense'):
    # get data dimensions
    nky, nkz, nechoes, ncoils = kspace.shape

    # ESPIRiT parameters
    nmaps = args.num_emaps
    calib_size = args.ncalib
    crop_value = args.crop_value

    if args.device is -1:
        device = sp.cpu_device
    else:
        device = sp.Device(args.device)

    # compute sensitivity maps (BART)
    #cmd = f'ecalib -d 0 -S -m {nmaps} -c {crop_value} -r {calib_size}'
    #maps = bart.bart(1, cmd, kspace[:,:,0,None,:])
    #maps = np.reshape(maps, (nky, nkz, 1, ncoils, nmaps))

    # compute sensitivity maps (SigPy)
    ksp = np.transpose(kspace[:, :, 0, :], [2, 1, 0])
    if calib_method is 'espirit':
        maps = app.EspiritCalib(ksp,
                                calib_width=calib_size,
                                crop=crop_value,
                                device=device,
                                show_pbar=False).run()
    elif calib_method is 'jsense':
        maps = app.JsenseRecon(ksp,
                               mps_ker_width=6,
                               ksp_calib_width=calib_size,
                               device=device,
                               show_pbar=False).run()
    else:
        raise ValueError('%s calibration method not implemented...' %
                         calib_method)
    maps = np.reshape(np.transpose(maps, [2, 1, 0]),
                      (nky, nkz, 1, ncoils, nmaps))

    # Convert everything to tensors
    kspace_tensor = cplx.to_tensor(kspace).unsqueeze(0)
    maps_tensor = cplx.to_tensor(maps).unsqueeze(0)

    # Do coil combination using sensitivity maps (PyTorch)
    A = T.SenseModel(maps_tensor)
    im_tensor = A(kspace_tensor, adjoint=True)

    # Convert tensor back to numpy array
    image = cplx.to_numpy(im_tensor.squeeze(0))

    return image, maps