Пример #1
0
 def predict(self, signal, fs=44100):
     if len(signal.shape) > 1:
         signal = signal[:, 0]
     signal_new = remove_silence(fs, signal)
     # if len(signal_new) < len(signal) / 4:
     #     return "Silence"
     mfcc_vecs = mfcc(signal_new, fs, numcep=15)
     return self.predict_feat(mfcc_vecs)
Пример #2
0
 def predict(self, signal, fs = 44100):
     if len(signal.shape) > 1:
         signal = signal[:, 0]
     signal_new = remove_silence(fs, signal)
     # if len(signal_new) < len(signal) / 4:
     #     return "Silence"
     mfcc_vecs = mfcc(signal_new, fs, numcep = 15)
     return self.predict_feat(mfcc_vecs)
Пример #3
0
 def get_mfcc(self, audio_path):
     (sr, sig) = wav.read(audio_path)
     if len(sig.shape) > 1:
         sig = sig[:, 0]
     cleansig = remove_silence(sr, sig)
     mfcc_vecs = mfcc(cleansig, sr, numcep=19)
     mfcc_delta = librosa.feature.delta(mfcc_vecs.T)
     mfcc_delta2 = librosa.feature.delta(mfcc_vecs.T, order=2)
     feats = np.vstack([mfcc_vecs.T, mfcc_delta, mfcc_delta2])
     return feats.T
Пример #4
0
 def enroll(self, name, signal, fs = 44100):
     signal_new = remove_silence(fs, signal)
     hop_length = np.min([0.016 * fs, 512])
     mfcc = librosa.feature.mfcc(y = signal_new, sr = fs, n_mfcc = 15, hop_length = hop_length)
     mfcc = mfcc.T   
     mu = np.mean(mfcc, axis = 0)
     sigma = np.std(mfcc, axis = 0)
     feature = (mfcc - mu) / sigma
     self.features.append(feature)
     self.classes.append(name)
Пример #5
0
 def predict(self, signal, fs = 44100):
     signal_new = remove_silence(fs, signal)
     # if len(signal_new) < len(signal) / 4:
     #     return "Silence"
     hop_length = np.min([0.016 * fs, 512])
     mfcc = librosa.feature.mfcc(y = signal_new, sr = fs, n_mfcc = 15, hop_length = hop_length)
     mfcc = mfcc.T    
     mu = np.mean(mfcc, axis = 0)
     sigma = np.std(mfcc, axis = 0)
     feature = (mfcc - mu) / sigma
     return self.gmmset.predict_one(feature)
Пример #6
0
def get_mfcc(file_path, noise):
  fs, y = wavfile.read(to_mono(file_path)) # read .wav file

  y = remove_silence(fs, y)

  if not np.issubdtype(y.dtype, np.floating):
    y = [np.float32(i) for i in y]
    y = np.array(y)
  if len(noise) > 0:
    if not np.issubdtype(noise.dtype, np.floating):
      noise = [np.float32(i) for i in noise]
      noise = np.array(noise)
    y = nr.reduce_noise(audio_clip=np.array(y), noise_clip=np.array(noise), verbose=False)
 
  mfcc = extract(fs, y)
 
  return mfcc
Пример #7
0
        wavfile.write(NOISE_WAV, fs, signal)
        os.system("sox {0} -n noiseprof {1}".format(NOISE_WAV, NOISE_MODEL))

    def filter(self, fs, signal):
        rand = r.randint(1, 100000)
        fname = "/tmp/tmp{0}.wav".format(rand)
        signal = monophonic(signal)
        wavfile.write(fname, fs, signal)
        fname_clean = "/tmp/tmp{0}-clean.wav".format(rand)
        os.system("sox {0} {1} noisered {2} {3}".format(
            fname, fname_clean, NOISE_MODEL, THRES))
        fs, signal = wavfile.read(fname_clean)
        signal = monophonic(signal)

        os.remove(fname)
        os.remove(fname_clean)
        return signal


if __name__ == "__main__":
    fs, bg = wavfile.read(sys.argv[1])
    nr = NoiseReduction()
    nr.init_noise(fs, bg)

    fs, sig = wavfile.read(sys.argv[2])
    vaded = nr.filter(fs, sig)
    wavfile.write('vaded.wav', fs, vaded)

    removed = remove_silence(fs, vaded)
    wavfile.write("removed.wav", fs, removed)
Пример #8
0
 def enroll(self, name, signal, fs=44100):
     if len(signal.shape) > 1:
         signal = signal[:, 0]
     signal_new = remove_silence(fs, signal)
     mfcc_vecs = mfcc(signal_new, fs, numcep=15)
     self.enroll_feat(name, mfcc_vecs)
Пример #9
0
 def enroll(self, name, signal, fs = 44100):
     if len(signal.shape) > 1:
         signal = signal[:, 0]
     signal_new = remove_silence(fs, signal)
     mfcc_vecs = mfcc(signal_new, fs, numcep = 15)
     self.enroll_feat(name, mfcc_vecs)