def setup(self): global tmp_dir self.filepath = os.path.join(tmp_dir, "test_imaging_dataset.sima") self.tiff_ds = ImagingDataset( [Sequence.create('TIFF', example_tiff(), 1, 1)], self.filepath)
def setup(self): self.base_seq = sima.Sequence.create("TIFF", example_tiff(), 2, 2) self.displacements = np.random.randint(0, 10, self.base_seq.shape[:3] + (2,)) max_disp = np.amax([np.amax(d.reshape(-1, d.shape[-1]), 0) for d in self.displacements], 0) self.final_shape = np.array(self.base_seq.shape)[1:-1] self.final_shape[1:3] += max_disp
def test_hmm_missing_frame(self): global tmp_dir frames = Sequence.create('TIFF', example_tiff()) masked_seq = frames.mask([(5, None, None)]) corrected = self.hm2d.correct( [masked_seq], os.path.join(tmp_dir, 'test_hmm_3.sima')) assert_(all(np.all(np.isfinite(seq.displacements)) for seq in corrected))
def setup(self): self.tiff_seq = sima.Sequence.create("TIFF", example_tiff(), 2, 2) self.tmp_dir = os.path.join(os.path.dirname(__file__), "tmp") try: os.mkdir(self.tmp_dir) except: pass
def test_hmm_missing_frame(self): global tmp_dir frames = Sequence.create('TIFF', example_tiff()) masked_seq = frames.mask([(5, None, None)]) corrected = self.hm2d.correct([masked_seq], os.path.join(tmp_dir, 'test_hmm_3.sima')) assert_( all(np.all(np.isfinite(seq.displacements)) for seq in corrected)) assert_(np.prod(corrected.frame_shape) > 0)
def test_hmm_missing_column(self): global tmp_dir frames = Sequence.create('TIFF', example_tiff()) mask = np.zeros(frames.shape[1:-1], dtype=bool) mask[:, :, 30] = True masked_seq = frames.mask([(None, mask, None)]) corrected = self.hm2d.correct( [masked_seq], os.path.join(tmp_dir, 'test_hmm_3.sima')) assert_(all(np.all(np.isfinite(seq.displacements)) for seq in corrected))
def test_hmm_missing_column(self): global tmp_dir frames = Sequence.create('TIFF', example_tiff()) mask = np.zeros(frames.shape[1:-1], dtype=bool) mask[:, :, 30] = True masked_seq = frames.mask([(None, mask, None)]) corrected = self.hm2d.correct( [masked_seq], os.path.join(tmp_dir, 'test_hmm_missing_column.sima')) assert_(all(np.all(np.isfinite(seq.displacements)) for seq in corrected))
def test_hmm_tmp(self): # TODO: remove when displacements.pkl is updated global tmp_dir frames = Sequence.create('TIFF', example_tiff()) with warnings.catch_warnings(): warnings.filterwarnings("ignore", category=DeprecationWarning) corrected = self.hm2d.correct( [frames], os.path.join(tmp_dir, 'test_hmm_2.sima')) with open(misc.example_data() + '/displacements.pkl', 'rb') as fh: displacements = [d.reshape((20, 1, 128, 2)) for d in pickle.load(fh)] displacements_ = [seq.displacements for seq in corrected] assert_(abs(displacements_[0] - displacements[0]).max() <= 1)
def test_hmm_missing_frame(self): global tmp_dir frames = Sequence.create('TIFF', example_tiff()) masked_seq = frames.mask([(5, None, None)]) with warnings.catch_warnings(): warnings.simplefilter('ignore') corrected = self.hm2d.correct( [masked_seq], os.path.join( tmp_dir, 'test_hmm_missing_frame.sima')) assert_(all(np.all(np.isfinite(seq.displacements)) for seq in corrected)) assert_(np.prod(corrected.frame_shape) > 0)
def test_hmm_tmp(self): # TODO: remove when displacements.pkl is updated global tmp_dir frames = Sequence.create('TIFF', example_tiff()) with warnings.catch_warnings(): warnings.filterwarnings("ignore", category=DeprecationWarning) corrected = self.hm2d.correct( [frames], os.path.join(tmp_dir, 'test_hmm_2.sima')) with open(misc.example_data() + '/displacements.pkl', 'rb') as fh: displacements = [d.reshape((20, 1, 128, 2)) for d in pickle.load(fh)] displacements_ = [seq.displacements for seq in corrected] diffs = displacements_[0] - displacements[0] assert_( ((diffs - diffs.mean(axis=2).mean(axis=1).mean(axis=0)) > 1).mean() <= 0.001)
def test_hmm(self): global tmp_dir frames = Sequence.create('TIFF', example_tiff()) with warnings.catch_warnings(): warnings.filterwarnings("ignore", category=DeprecationWarning) corrected = self.hm2d.correct( [frames], os.path.join(tmp_dir, 'test_hmm.sima')) with open(misc.example_data() + '/displacements.pkl', 'rb') as fh: displacements = [d.reshape((20, 1, 128, 2)) for d in pickle.load(fh)] displacements_ = [seq.displacements for seq in corrected] assert_almost_equal(displacements_, displacements)
def setup(self): self.tiff_seq = sima.Sequence.create('TIFF', example_tiff(), 2, 2)
def setup(self): self.tiff_seq = sima.Sequence.create('TIFF', example_tiff(), 2, 2) self.masked_mask = np.zeros((5, 2, 128, 256, 2), dtype=bool)