Пример #1
0
# compute pairwise distance
D = compute_pairwise_distance(resampled_ground_truth_curve)
ind = listIndices(n, 1)  # get the upper triangular index of the matrix
# compute expect number of interactions
MU = b * pow(D, a)
# simulate from independent poisson distribution
c = np.random.poisson(MU[ind[:, 0], ind[:, 1]])
# construct the pairwise interaction matrix
C = np.zeros([n, n])
C[ind[:, 0], ind[:, 1]] = c  # only the upper triangular part
C = C + C.T  # make the matrix symetric
# save the simulated matrix
np.savetxt("data/simulate_data_" + str(n) + ".csv", C, delimiter=',')

fig1, ax1 = pt.plot_curve(resampled_ground_truth_curve, tn)
pt.plot_pts(resampled_ground_truth_curve, t, ax=ax1, fig=fig1)
fig1.suptitle('Ground Truth Curve', fontsize=18)
fig1.savefig('images/ground_truth_curve.png')

fig2, ax2, m = pt.matshow(1.0 * (C > 0))
fig2.suptitle('Non-Zero Simulated Data', fontsize=18)
fig2.savefig('images/simulated_data_nonzeros.png')

fig3, ax3, m = pt.matshow(C)
fig3.suptitle('Simulated Data', fontsize=18)
fig3.savefig('images/simulated_data.png')

if display_the_result:
    plt.show(block=True
             )  # If you want to display the results uncomment the thing above
Пример #2
0
def main(args=None):
    """
    main function for the simba3d display command line utility
    """
    if args is None:
        args = sys.argv[:]
    ii = 1
    param_name = []
    param_min = []
    param_max = []
    center_to_filename = None
    report_directory = '.'
    image_ext = 'png'
    summary_name = 'results_summary'
    print_each = False
    latex_print = False
    inputfiles = []
    while ii < len(args):
        print(args[ii])
        if (args[ii] == '-h') | (args[ii] == '--help'):
            printhelp()
            sys.exit()
        if (args[ii] == '-p') | (args[ii] == '--print-each'):
            ii += 1
            summary_name = str(args[ii])
            print('\t' + args[ii])
            print_each = True
            latex_print = True
        if (args[ii] == '-o') | (args[ii] == '--output-directory'):
            ii += 1
            report_directory = str(args[ii])
            print('\t' + args[ii])
            print_each = True
            latex_print = True
        if (args[ii] == '-f') | (args[ii] == '--format'):
            ii += 1
            image_ext = str(args[ii])
            print('\t' + args[ii])
            print_each = True
            latex_print = True
        if (args[ii] == '-c') | (args[ii] == '--center-to'):
            ii += 1
            center_to_filename = str(args[ii])
            print('\t' + args[ii])
        if (args[ii] == '-i') | (args[ii] == '--input-files'):
            inputfiles = []
            ii += 1
            while ii < len(args):
                inputfiles.append(args[ii])
                print('\t' + args[ii])
                ii += 1
        ii += 1
    image_directory = os.path.join(report_directory, 'figures')
    # create the report directory if it does not exist
    if print_each:
        try:
            if not os.path.exists(report_directory):
                os.mkdir(report_directory)
                print("Directory ", report_directory, " Created ")
            if not os.path.exists(image_directory):
                os.mkdir(image_directory)
                print("Directory ", image_directory, " Created ")
        except:
            print("Potentially failed to create report directories")
    #print inputfiles
    curves = []
    scurves = []
    scurves_init = []
    length = []
    energy = []
    if not inputfiles:
        print('No inputs provided')
        printhelp()
    else:
        # specify the file all the other figures will rotate to
        if center_to_filename is None:
            center_to_filename = inputfiles[0]
        summary = mp.load_result(center_to_filename)
        X0 = np.array(summary['X_evol'][-1])  # get the last curve
        # get dimension
        if 'd' in summary:
            d = summary['d']
        else:
            d, n0 = np.shape(X0)
        if 'n' in summary:
            n = summary['n']

        else:
            d, n = np.shape(X0)
        X0 = X0.reshape((d, n))  # correct dimensions
        center_curve, mu = srvf.center_curve(X0)
        scenter_curve, scale = srvf.scale_curve(center_curve)

    latex = make_latex_report_header('figures')

    for inputfile in inputfiles:
        summary = mp.load_result(inputfile)
        if result_passes_filter(summary, param_name, param_min, param_max):
            #print summary.keys()
            if 'uuid' in summary:
                print(summary['uuid'])
            if 'E_evol' in summary:
                energy.append(summary['E_evol'])
                #print summary.keys()
            if 'X_evol' in summary:
                X0 = np.array(summary['X_evol'][-1])  # get the last curve
                # get dimension
                if 'd' in summary:
                    d = summary['d']
                else:
                    d, n = np.shape(X0)
                if 'n' in summary:
                    n = summary['n']
                else:
                    d, n = np.shape(X0)
                X0 = X0.reshape((d, n))  # correct dimensions
                curves.append(X0)
                length.append(n)

                curve, mu = srvf.center_curve(X0)
                scurve, scale = srvf.scale_curve(curve)
                scurves.append(scurve)
                scurve, rot = srvf.find_best_rotation(scenter_curve, scurve)
                scurves[-1] = scurve
            weight_uniform_spacing = None
            if "weight_uniform_spacing" in summary:
                weight_uniform_spacing = summary['weight_uniform_spacing']
            weight_smoothing = None
            if "weight_smoothing" in summary:
                weight_smoothing = summary['weight_smoothing']
            weight_population_prior = None
            if "weight_population_prior" in summary:
                weight_population_prior = summary['weight_population_prior']
            computation_time = None
            if "computation_time" in summary:
                computation_time = summary['computation_time']
            nonspecified_zeros_as_missing = None
            if "nonspecified_zeros_as_missing" in summary:
                nonspecified_zeros_as_missing = summary[
                    'nonspecified_zeros_as_missing']
            if 'initialized_curve' in summary:
                X0 = np.array(
                    summary['initialized_curve'])  # get the last curve
                # get dimension
                if 'd' in summary:
                    d = summary['d']
                else:
                    d, n = np.shape(X0)
                if 'n' in summary:
                    n = summary['n']
                else:
                    d, n = np.shape(X0)
                X0 = X0.reshape((d, n))  # correct dimensions
                curves.append(X0)
                length.append(n)

                curve, mu = srvf.center_curve(X0)
                scurve, scale = srvf.scale_curve(curve)
                scurves_init.append(scurve)
                scurve, rot = srvf.find_best_rotation(scenter_curve, scurve)
                scurves_init[-1] = scurve
                plt.close('all')
                fig1 = plt.figure()
                plt.figure(fig1.number)
                plt.plot(energy[-1])
                plt.title("Energy Evolution")

                fig3 = plt.figure()
                plt.subplots_adjust(left=0.0,
                                    right=1.0,
                                    bottom=0.0,
                                    top=1.0,
                                    wspace=0.0,
                                    hspace=0.0)
                #fig2.tight_layout()
                ax3 = fig3.add_subplot(111, projection='3d')
                ax3.set_axis_off()
                (m, n) = np.shape(scurves_init[-1])
                t = np.linspace(0, 1, n)
                pt.plot_curve(scurves_init[-1], t, ax=ax3, fig=fig3)
                pt.plot_pts(scurves_init[-1], t, ax=ax3, fig=fig3)
                plt.title("Initialized Curve")
                plt.figure(fig3.number)

                fig2 = plt.figure()
                plt.subplots_adjust(left=0.0,
                                    right=1.0,
                                    bottom=0.0,
                                    top=1.0,
                                    wspace=0.0,
                                    hspace=0.0)
                #fig2.tight_layout()
                ax2 = fig2.add_subplot(111, projection='3d')
                ax2.set_axis_off()
                (m, n) = np.shape(scurves[-1])
                t = np.linspace(0, 1, n)
                pt.plot_curve(scurves[-1], t, ax=ax2, fig=fig2)
                pt.plot_pts(scurves[-1], t, ax=ax2, fig=fig2)
                plt.figure(fig2.number)
                plt.title("Estimated Curve")
            if not print_each:
                plt.show()
            if print_each:
                if image_ext not in ["png", 'pdf', 'svg', 'ps', 'eps']:
                    print('invalid image format:' + image_ext)
                else:
                    base = os.path.basename(inputfile)
                    base = base.split('.')[0]
                    image_name_tmp = os.path.join(image_directory, base)
                    print(image_name_tmp)
                    try:
                        fig1.savefig(image_name_tmp + '_energies.' + image_ext)
                        fig3.savefig(image_name_tmp + '_initial_curves.' +
                                     image_ext)
                        fig2.savefig(image_name_tmp + '_estimated_curves.' +
                                     image_ext)
                        if latex_print:
                            params = dict()
                            params['inputfile'] = inputfile
                            params['table width'] = 3
                            params['images'] = [
                                base + '_energies.' + image_ext,
                                base + '_initial_curves.' + image_ext,
                                base + '_estimated_curves.' + image_ext
                            ]
                            params['statistics'] = {
                                'Final Energy':
                                energy[-1][-1],
                                'Total Iterations':
                                len(energy[-1]),
                                'Total Computation Time':
                                computation_time,
                                'Uniform Spacing Penalty':
                                weight_uniform_spacing,
                                'Smoothing Penalty':
                                weight_smoothing,
                                'Population Penalty':
                                weight_population_prior,
                                'Nonspecified Zeros As Missing':
                                nonspecified_zeros_as_missing
                            }

                            latex_table = make_latex_table(params)
                            latex += latex_table
                    except:
                        print("unable to create image for:" + inputfile)
    if latex_print:
        latex += make_latex_report_footer()
        print(latex)
        with open(os.path.join(report_directory, summary_name + '.tex'),
                  'w') as result:
            result.write(latex)
#%% load the output report file curve
report_file ='results/simulated_data_b7b1fe84-8b80-4bb4-9af8-8f0f9e7aa3b7_400.npz'
summary=mp.load_result(report_file)
curves=summary['X_evol']
#remove translation and scale of the ground truth curve
curve,mu=srvf.center_curve(curves[-1]) # remove translation
curve,scale=srvf.scale_curve(curve) # remove scale
#align estimated curve to the ground truth curve
curve,rot=srvf.find_best_rotation(center_curve,curve)# align to the first curve

# plot the estimated curve
d,n=np.shape(curve);
t=np.linspace(0,1,n)
fig1,ax1=pt.plot_curve(curve,t)
pt.plot_pts(curve,t,ax=ax1,fig=fig1)   
fig1.suptitle('Estimated Curve',fontsize=18)
fig1.savefig('images/estimated_curve.png');

# add the ground truth curve on top
d,n=np.shape(center_curve);
t=np.linspace(0,1,n)
fig1,ax1=pt.plot_curve(center_curve,ax=ax1,fig=fig1)
pt.plot_pts(center_curve,ax=ax1,fig=fig1)   
fig1.suptitle('Estimated Curve with Ground Truth',fontsize=18)
fig1.savefig('images/estimated_and_groundtruth_curve.png');

# print the weight settings
print("uniform spacing penalty:"+str(summary['weight_uniform_spacing']))
print("smoothing penalty:"+str(summary['weight_smoothing']))
print("population prior penalty:"+str(summary['weight_population_prior']))
Пример #4
0
def main(args=None):
    """
    main function for the simba3d display command line utility
    """
    if args is None:
        args = sys.argv[:]
    ii = 1
    report_directory = '.'
    image_ext = 'png'
    summary_name = 'tasks_summary'
    print_each = False
    latex_print = False
    colormap_name = 'pink'
    p = 100
    while ii < len(args):
        print(args[ii])
        if (args[ii] == '-h') | (args[ii] == '--help'):
            printhelp()
            sys.exit()
        if (args[ii] == '-p') | (args[ii] == '--print-each'):
            ii += 1
            summary_name = str(args[ii])
            print('\t' + args[ii])
            print_each = True
            latex_print = True
        if (args[ii] == '-o') | (args[ii] == '--output-directory'):
            ii += 1
            report_directory = str(args[ii])
            print('\t' + args[ii])
            print_each = True
            latex_print = True
        if (args[ii] == '-f') | (args[ii] == '--format'):
            ii += 1
            image_ext = str(args[ii])
            print('\t' + args[ii])
            print_each = True
            latex_print = True
        if (args[ii] == '-c') | (args[ii] == '--colormap'):
            ii += 1
            colormap_name = str(args[ii])
            print('\t' + args[ii])
        if (args[ii] == '-i') | (args[ii] == '--input-files'):
            inputfiles = []
            ii += 1
            while ii < len(args):
                inputfiles.append(args[ii])
                print('\t' + args[ii])
                ii += 1
        ii += 1
    image_directory = os.path.join(report_directory, 'figures')
    # create the report directory if it does not exist
    if print_each:
        try:
            if not os.path.exists(report_directory):
                os.mkdir(report_directory)
                print("Directory ", report_directory, " Created ")
            if not os.path.exists(image_directory):
                os.mkdir(image_directory)
                print("Directory ", image_directory, " Created ")
        except:
            print("Potentially failed to create report directories")

    latex = lr.make_latex_report_header('figures')
    tasks = []
    scenter_curve = None
    for inputfile in inputfiles:
        curves = []
        scurves = []
        scurves_init = []
        length = []
        energy = []
        print('Reading:' + inputfile)
        basename = os.path.basename(inputfile)
        filepath = os.path.dirname(inputfile)
        latex += r'\pagebreak' + u'\n'
        latex += lr.make_latex_section('Task Summary', inputfile)

        with open(inputfile, 'r') as tasklist:
            tasks = json.load(tasklist)
            number_of_tasks = str(len(tasks))
            number_of_tasks_remaining = str(len(check_tasks_index(
                tasks)))  # find which tasks still need to run
            for task in tasks:
                index_remaining = check_tasks_index(task)
                number_of_subtasks = str(len(task))
                number_of_subtasks_remaining = str(len(check_tasks_index(
                    task)))  # find which tasks still need to run
                for subtask in task:
                    UUID = None
                    if 'uuid' in subtask:
                        UUID = subtask['uuid']

                    latex += lr.make_latex_subsection('Subtask Summary', UUID)
                    if UUID is None:
                        UUID = str(uuid.uuid4())
                    matrix_files = []
                    is_sparse = []
                    initialized_curve_files = []
                    data = load_data(subtask)
                    #
                    # get the file input names
                    latex += r'\subsubsection{Inputs}' + u'\n'
                    if 'file_names' in subtask:
                        inputdir = '.'
                        if 'inputdir' in subtask['file_names']:
                            inputdir = subtask['file_names']['inputdir']
                        input_parameters = ''
                        for key in subtask.keys():
                            skip = 'data' in key
                            skip += 'file_names' in key
                            if skip == 0:
                                if type(subtask[key]) == type(dict()):
                                    for subkey in subtask[key].keys():
                                        if type(subtask[key][subkey]) == type(
                                                dict()):
                                            for subsubkey in subtask[key][
                                                    subkey].keys():
                                                name = key + ' ' + subkey + ' ' + subsubkey
                                                input_parameters += name + ':' + str(
                                                    subtask[key][subkey]
                                                    [subsubkey]) + u'\n'
                                        else:
                                            name = key + ' ' + subkey
                                            input_parameters += name + ':' + str(
                                                subtask[key][subkey]) + u'\n'
                                else:
                                    name = key
                                    input_parameters += name + ':' + str(
                                        subtask[key]) + u'\n'

                        latex += lr.make_latex_table(
                            {'inputfile': input_parameters})
                        for key in subtask['file_names'].keys():
                            if 'output' not in key:
                                params = dict()
                                params['inputfile'] = key + ':' + subtask[
                                    'file_names'][key]
                                params['table width'] = 2
                                if key in data:
                                    filename = UUID + key
                                    if 'initialized_curve' in key:

                                        curve, mu = srvf.center_curve(
                                            data[key])
                                        scurve, scale = srvf.scale_curve(curve)
                                        if scenter_curve is None:
                                            scenter_curve = scurve
                                        else:
                                            scurve, rot = srvf.find_best_rotation(
                                                scenter_curve, scurve)
                                        fig3 = plt.figure()
                                        plt.subplots_adjust(left=0.0,
                                                            right=1.0,
                                                            bottom=0.0,
                                                            top=1.0,
                                                            wspace=0.0,
                                                            hspace=0.0)
                                        #fig2.tight_layout()
                                        ax3 = fig3.add_subplot(111,
                                                               projection='3d')
                                        ax3.set_axis_off()
                                        (m, n) = np.shape(scurve)
                                        t = np.linspace(0, 1, n)
                                        pt.plot_curve(scurve,
                                                      t,
                                                      ax=ax3,
                                                      fig=fig3)
                                        pt.plot_pts(scurve,
                                                    t,
                                                    ax=ax3,
                                                    fig=fig3)
                                        plt.title("Initialized Curve")
                                        if not print_each:
                                            plt.show()
                                        else:
                                            imagename = os.path.join(
                                                image_directory,
                                                filename + '.' + image_ext)
                                            fig3.savefig(imagename)

                                            params['images'] = [
                                                filename + '.' + image_ext
                                            ]
                                            params['statistics'] = {
                                                'm': str(m),
                                                'n': str(n),
                                            }
                                    if '_matrix' in key:
                                        # you have a matrix
                                        if 'sparse_' in key:
                                            # it is sparse
                                            matrix = data[key].todense()
                                        else:
                                            # it is not sparse
                                            matrix = data[key]
                                        q = np.percentile(matrix, p)
                                        plt.close('all')
                                        fig1 = plt.figure()
                                        plt.figure(fig1.number)
                                        plt.imshow(matrix, colormap_name)
                                        plt.clim([0, q])
                                        plt.colorbar()
                                        if not print_each:
                                            plt.show()
                                        else:
                                            imagename = os.path.join(
                                                image_directory,
                                                filename + '.' + image_ext)
                                            fig1.savefig(imagename)

                                            (m, n) = np.shape(matrix)

                                            params['images'] = [
                                                filename + '.' + image_ext
                                            ]
                                            params['statistics'] = {
                                                'Row Length':
                                                str(m),
                                                'Column Length':
                                                str(n),
                                                'Total Entries':
                                                str(n * m),
                                                'Non-zero Entries':
                                                str(np.sum(matrix > 0)),
                                                'Sum':
                                                str(np.sum(matrix)),
                                                'Max':
                                                str(np.max(matrix)),
                                                'Non-trivial Rows':
                                                str(np.sum(
                                                    sum(matrix > 0) > 0))
                                            }
                                latex += lr.make_latex_table(params)
                        # summarize input files\
                    latex += r'\subsubsection{Results}' + u'\n'
                    summary = mp.load_result(get_outputfilepath(subtask))
                    if not summary:
                        latex += u'No output result file found.\n'
                    else:
                        if 'uuid' in summary:
                            print(summary['uuid'])
                        if 'E_evol' in summary:
                            energy.append(summary['E_evol'])
                            #print summary.keys()
                        if 'X_evol' in summary:
                            X0 = np.array(
                                summary['X_evol'][-1])  # get the last curve
                            # get dimension
                            if 'd' in summary:
                                d = summary['d']
                            else:
                                d, n = np.shape(X0)
                            if 'n' in summary:
                                n = summary['n']
                            else:
                                d, n = np.shape(X0)
                            X0 = X0.reshape((d, n))  # correct dimensions
                            curves.append(X0)
                            length.append(n)

                            curve, mu = srvf.center_curve(X0)
                            scurve, scale = srvf.scale_curve(curve)
                            scurves.append(scurve)
                            scurve, rot = srvf.find_best_rotation(
                                scenter_curve, scurve)
                            scurves[-1] = scurve
                        weight_uniform_spacing = None
                        if "weight_uniform_spacing" in summary:
                            weight_uniform_spacing = summary[
                                'weight_uniform_spacing']
                        weight_smoothing = None
                        if "weight_smoothing" in summary:
                            weight_smoothing = summary['weight_smoothing']
                        weight_population_prior = None
                        if "weight_population_prior" in summary:
                            weight_population_prior = summary[
                                'weight_population_prior']
                        computation_time = None
                        if "computation_time" in summary:
                            computation_time = summary['computation_time']
                        if 'initialized_curve' in summary:
                            X0 = np.array(summary['initialized_curve']
                                          )  # get the last curve
                            # get dimension
                            if 'd' in summary:
                                d = summary['d']
                            else:
                                d, n = np.shape(X0)
                            if 'n' in summary:
                                n = summary['n']
                            else:
                                d, n = np.shape(X0)
                            X0 = X0.reshape((d, n))  # correct dimensions
                            curves.append(X0)
                            length.append(n)

                            curve, mu = srvf.center_curve(X0)
                            scurve, scale = srvf.scale_curve(curve)
                            scurves_init.append(scurve)
                            scurve, rot = srvf.find_best_rotation(
                                scenter_curve, scurve)
                            scurves_init[-1] = scurve
                            plt.close('all')
                            fig1 = plt.figure()
                            plt.figure(fig1.number)
                            plt.plot(energy[-1])
                            plt.title("Energy Evolution")

                            fig3 = plt.figure()
                            plt.subplots_adjust(left=0.0,
                                                right=1.0,
                                                bottom=0.0,
                                                top=1.0,
                                                wspace=0.0,
                                                hspace=0.0)
                            #fig2.tight_layout()
                            ax3 = fig3.add_subplot(111, projection='3d')
                            ax3.set_axis_off()
                            (m, n) = np.shape(scurves_init[-1])
                            t = np.linspace(0, 1, n)
                            pt.plot_curve(scurves_init[-1],
                                          t,
                                          ax=ax3,
                                          fig=fig3)
                            pt.plot_pts(scurves_init[-1], t, ax=ax3, fig=fig3)
                            plt.title("Initialized Curve")
                            plt.figure(fig3.number)

                            fig2 = plt.figure()
                            plt.subplots_adjust(left=0.0,
                                                right=1.0,
                                                bottom=0.0,
                                                top=1.0,
                                                wspace=0.0,
                                                hspace=0.0)
                            #fig2.tight_layout()
                            ax2 = fig2.add_subplot(111, projection='3d')
                            ax2.set_axis_off()
                            (m, n) = np.shape(scurves[-1])
                            t = np.linspace(0, 1, n)
                            pt.plot_curve(scurves[-1], t, ax=ax2, fig=fig2)
                            pt.plot_pts(scurves[-1], t, ax=ax2, fig=fig2)
                            plt.figure(fig2.number)
                            plt.title("Estimated Curve")
                            if not print_each:
                                plt.show()
                            else:
                                fig1.savefig(
                                    os.path.join(
                                        image_directory,
                                        UUID + '_energies.' + image_ext))
                                fig3.savefig(
                                    os.path.join(
                                        image_directory,
                                        UUID + '_initial_curves.' + image_ext))
                                fig2.savefig(
                                    os.path.join(
                                        image_directory, UUID +
                                        '_estimated_curves.' + image_ext))
                            if latex_print:
                                params = dict()
                                params['inputfile'] = get_outputfilepath(
                                    subtask)
                                params['table width'] = 3
                                params['images'] = [
                                    UUID + '_energies.' + image_ext,
                                    UUID + '_initial_curves.' + image_ext,
                                    UUID + '_estimated_curves.' + image_ext
                                ]
                                params['statistics'] = {
                                    'Final Energy': energy[-1][-1],
                                    'Total Iterations': len(energy[-1]),
                                    'Total Computation Time': computation_time,
                                }
                                latex_table = lr.make_latex_table(params)
                                latex += latex_table

    if latex_print:
        latex += r'\end{document}' + u'\n'
        print(latex)
        with open(os.path.join(report_directory, summary_name + '.tex'),
                  'w') as result:
            result.write(latex)