Пример #1
0
def test_probability_values_tree(data):
    X, y = data
    clf = SimilarityTreeClassifier()
    clf.fit(X, y)
    preds = clf.predict_proba(X)

    assert_allclose(np.sum(preds, axis=1), np.ones(shape=y.shape))
Пример #2
0
def test_setting_attributes_tree(data):
    X, y = data
    clf = SimilarityTreeClassifier(random_state=42, n_directions=2)
    clf.fit(X, y)
    y_pred = clf.predict(X)

    assert clf.random_state == 42
    assert clf.n_directions == 2
Пример #3
0
def test_deterministic_predictions_tree():
    X, y = make_blobs(n_samples=300, centers=[(0, 0), (1, 1)], random_state=42)

    clf1 = SimilarityTreeClassifier(random_state=42)
    clf1.fit(X, y)
    clf2 = SimilarityTreeClassifier(random_state=42)
    clf2.fit(X, y)

    y_pred1 = clf1.predict(X)
    y_pred2 = clf2.predict(X)
    assert_array_equal(y_pred1, y_pred2)
Пример #4
0
def test_train_set_acc(data):
    X, y = data

    forest = SimilarityForestClassifier()
    forest.fit(X, y)
    # shouldn't be actually 1.0?
    assert forest.score(X, y) > 0.8

    tree = SimilarityTreeClassifier()
    tree.fit(X, y)
    assert tree.score(X, y) > 0.9
Пример #5
0
def test_similarity_tree_classifier_prediction(data):
    X, y = data
    X_train, X_test, y_train, y_test = train_test_split(X,
                                                        y,
                                                        test_size=0.3,
                                                        random_state=42)

    clf = SimilarityTreeClassifier()
    clf.fit(X_train, y_train)

    y_pred = clf.predict(X_test)
    assert y_pred.shape == (X_test.shape[0], )
    assert accuracy_score(y_test, y_pred) > 0.9
Пример #6
0
def test_log_probabilities_tree(data):
    X, y = data
    clf = SimilarityTreeClassifier()
    clf.fit(X, y)
    preds = clf.predict_proba(X)
    log_preds = clf.predict_log_proba(X)

    assert_allclose(log_preds, np.log(preds + 1e-10))
Пример #7
0
def test_pure_node():
    X = np.ndarray(shape=(2, 2), dtype=float, order='F')
    y = np.zeros(shape=(2, ), dtype=np.int64)
    clf = SimilarityTreeClassifier()
    clf.fit(X, y)
    assert clf._is_leaf == True
Пример #8
0
def test_number_of_tree_leaves_in_apply(data):
    X, y = data
    clf = SimilarityTreeClassifier()
    clf.fit(X, y)

    assert (np.unique(clf.apply(X)).size == clf.get_n_leaves())