def Prism(dx, dy, dz, depth, pinc, pdec, npts2D, xylim, rx_h, View_elev, View_azim): #p = definePrism(dx, dy, dz, depth,pinc=pinc, pdec=pdec, susc = 1., Einc=90., Edec=0., Bigrf=1e-6) p = definePrism() p.dx, p.dy, p.dz, p.z0 = dx, dy, dz, -depth p.pinc, p.pdec = pinc, pdec srvy = MAG.survey() srvy.rx_h, srvy.npts2D, srvy.xylim = rx_h, npts2D, xylim # Create problem prob = MAG.problem() prob.prism = p prob.survey = srvy return plotObj3D(p, rx_h, View_elev, View_azim, npts2D, xylim, profile="X"), prob
def animate(ii): removePlt() #ii=1 if ii<18: dec = 90 inc = 0. + ii*5. elif ii < 36: dec = 270. inc = 90. - (ii-18)*5. elif ii < 54: dec = 270. inc = 0.+ (ii-36)*5. else: dec = 90 inc = 90. - (ii-54)*5. ax1.axis('equal') block_xyz = np.asarray([[-.2, -.2, .2, .2, 0], [-.25, -.25, -.25, -.25, 0.5], [-.2, .2, .2, -.2, 0]])*10. block_xyz[1][:] -=20. # rot = Utils.mkvc(Utils.dipazm_2_xyz(pinc, pdec)) # xyz = Utils.rotatePointsFromNormals(block_xyz.T, np.r_[0., 1., 0.], rot, # np.r_[p.xc, p.yc, p.zc]) R = Utils.rotationMatrix(inc, dec) xyz = R.dot(block_xyz).T xyz[:,2] -= depth + dz/2. #print xyz # Face 1 ax1.add_collection3d(Poly3DCollection([zip(xyz[:4, 0], xyz[:4, 1], xyz[:4, 2])], facecolors='b')) ax1.add_collection3d(Poly3DCollection([zip(xyz[[1, 2, 4], 0], xyz[[1, 2, 4], 1], xyz[[1, 2, 4], 2])], facecolors='b')) ax1.add_collection3d(Poly3DCollection([zip(xyz[[0, 1, 4], 0], xyz[[0, 1, 4], 1], xyz[[0, 1, 4], 2])], facecolors='b')) ax1.add_collection3d(Poly3DCollection([zip(xyz[[2, 3, 4], 0], xyz[[2, 3, 4], 1], xyz[[2, 3, 4], 2])], facecolors='b')) ax1.add_collection3d(Poly3DCollection([zip(xyz[[0, 3, 4], 0], xyz[[0, 3, 4], 1], xyz[[0, 3, 4], 2])], facecolors='b')) ax1.w_yaxis.set_ticklabels('') ax1.w_yaxis.set_label_text('') ax1.w_zaxis.set_ticklabels('') ax1.w_zaxis.set_label_text('') # block_xyz[1][:] +=20. # # rot = Utils.mkvc(Utils.dipazm_2_xyz(pinc, pdec)) # # # xyz = Utils.rotatePointsFromNormals(block_xyz.T, np.r_[0., 1., 0.], rot, # # np.r_[p.xc, p.yc, p.zc]) # # R = Utils.rotationMatrix(rinc, rdec) # # xyz = R.dot(block_xyz).T # xyz[:,2] -= depth + dz/2. # # #print xyz # # Face 1 # ax1.add_collection3d(Poly3DCollection([zip(xyz[:4, 0], # xyz[:4, 1], # xyz[:4, 2])], facecolors='y')) # # ax1.add_collection3d(Poly3DCollection([zip(xyz[[1, 2, 4], 0], # xyz[[1, 2, 4], 1], # xyz[[1, 2, 4], 2])], facecolors='y')) # # ax1.add_collection3d(Poly3DCollection([zip(xyz[[0, 1, 4], 0], # xyz[[0, 1, 4], 1], # xyz[[0, 1, 4], 2])], facecolors='y')) # # ax1.add_collection3d(Poly3DCollection([zip(xyz[[2, 3, 4], 0], # xyz[[2, 3, 4], 1], # xyz[[2, 3, 4], 2])], facecolors='y')) # # ax1.add_collection3d(Poly3DCollection([zip(xyz[[0, 3, 4], 0], # xyz[[0, 3, 4], 1], # xyz[[0, 3, 4], 2])], facecolors='y')) MAG.plotObj3D(p, rx_h, View_elev, View_azim, npts2D, xylim, profile="X", fig= fig, axs = ax1, plotSurvey=False) # Create problem prob = PFlocal.problem() prob.prism = p prob.survey = srvy prob.Bdec, prob.Binc, prob.Bigrf = dec, inc, Bigrf prob.Q, prob.rinc, prob.rdec = Q, rinc, rdec prob.uType, prob.mType = comp, 'total' prob.susc = susc # Compute fields from prism b_ind, b_rem = prob.fields() if irt == 'total': out = b_ind + b_rem elif irt == 'induced': out = b_ind else: out = b_rem #out = plogMagSurvey2D(prob, susc, Einc, Edec, Bigrf, x1, y1, x2, y2, comp, irt, Q, rinc, rdec, fig=fig, axs1=ax2, axs2=ax3) #dat = axs1.contourf(X,Y, np.reshape(out, (X.shape)).T global im1 im1 = ax1.contourf(X,Y,np.reshape(out, (X.shape)).T,20,zdir='z',offset=rx_h+5., clim=clim, vmin=clim[0],vmax=clim[1], cmap = 'RdBu_r') ax5 = fig.add_axes([pos.x0 , pos.y0+0.25, pos.height*0.02, pos.height*0.4]) cb = plt.colorbar(im1,cax=ax5, orientation="vertical", ax = ax1, ticks=np.linspace(im1.vmin,im1.vmax, 4), format="${%.0f}$") cb.set_label("$B^{TMI}\;(nT)$",size=12) cb.ax.yaxis.set_ticks_position('left') cb.ax.yaxis.set_label_position('left') global im5 im5 = ax1.text(0,0,-60,'$B_0, I: ' + str(inc) + '^\circ, D: ' + str(dec) + '^\circ$', horizontalalignment='center') H0 = (Bigrf,inc,dec) actv = np.ones(mesh.nC)==1 # Create active map to go from reduce space to full actvMap = Maps.InjectActiveCells(mesh, actv, -100) nC = len(actv) # Create a MAGsurvey rxLoc = np.c_[Utils.mkvc(X), Utils.mkvc(Y), Utils.mkvc(Z)] rxLoc = PF.BaseMag.RxObs(rxLoc) srcField = PF.BaseMag.SrcField([rxLoc],param = H0) survey = PF.BaseMag.LinearSurvey(srcField) # We can now create a susceptibility model and generate data # Lets start with a simple block in half-space # model = np.zeros((mesh.nCx,mesh.nCy,mesh.nCz)) # model[(midx-2):(midx+2),(midy-2):(midy+2),-6:-2] = 0.02 # model = mkvc(model) # model = model[actv] # Create active map to go from reduce set to full actvMap = Maps.InjectActiveCells(mesh, actv, -100) # Creat reduced identity map idenMap = Maps.IdentityMap(nP = nC) # Create the forward model operator probinv = PF.Magnetics.MagneticIntegral(mesh, mapping = idenMap, actInd = actv) # Pair the survey and problem survey.pair(probinv) # Compute linear forward operator and compute some data # d = probinv.fields(model) # Plot the model # m_true = actvMap * model # m_true[m_true==-100] = np.nan #plt.figure() #ax = plt.subplot(212) #mesh.plotSlice(m_true, ax = ax, normal = 'Y', ind=midy, grid=True, clim = (0., model.max()/3.), pcolorOpts={'cmap':'viridis'}) #plt.title('A simple block model.') #plt.xlabel('x'); plt.ylabel('z') #plt.gca().set_aspect('equal', adjustable='box') # We can now generate data data = out + np.random.randn(len(out)) # We add some random Gaussian noise (1nT) wd = np.ones(len(data))*1. # Assign flat uncertainties # Create distance weights from our linera forward operator wr = np.sum(probinv.G**2.,axis=0)**0.5 wr = ( wr/np.max(wr) ) #survey.makeSyntheticData(data, std=0.01) survey.dobs= data survey.std = wd survey.mtrue = model # Create a regularization reg = Regularization.Sparse(mesh, indActive=actv, mapping=idenMap) reg.cell_weights = wr dmis = DataMisfit.l2_DataMisfit(survey) dmis.Wd = 1/wd # Add directives to the inversion opt = Optimization.ProjectedGNCG(maxIter=100 ,lower=0.,upper=1., maxIterLS = 20, maxIterCG= 10, tolCG = 1e-3) invProb = InvProblem.BaseInvProblem(dmis, reg, opt) betaest = Directives.BetaEstimate_ByEig() # Here is where the norms are applied # Use pick a treshold parameter empirically based on the distribution of model # parameters (run last cell to see the histogram before and after IRLS) IRLS = Directives.Update_IRLS( norms=([2,2,2,2]), eps=(2e-3,2e-3), f_min_change = 1e-3, minGNiter=3,beta_tol=1e-2) update_Jacobi = Directives.Update_lin_PreCond() inv = Inversion.BaseInversion(invProb, directiveList=[IRLS,betaest,update_Jacobi]) m0 = np.ones(nC)*1e-4 mrec = inv.run(m0) # Here is the recovered susceptibility model ypanel = midx zpanel = -4 m_l2 = actvMap * reg.l2model m_l2[m_l2==-100] = np.nan m_lp = actvMap * mrec m_lp[m_lp==-100] = np.nan # m_true = actvMap * model # m_true[m_true==-100] = np.nan #Plot L2 model #global im2 xx, zz = mesh.gridCC[:,0].reshape(mesh.vnC, order="F"), mesh.gridCC[:,2].reshape(mesh.vnC, order="F") yy = mesh.gridCC[:,1].reshape(mesh.vnC, order="F") temp = m_lp.reshape(mesh.vnC, order='F') ptemp = temp[:,:,indz].T #ptemp = ma.array(ptemp ,mask=np.isnan(ptemp)) global im2 im2 = ax2.contourf(xx[:,:,indz].T,yy[:,:,indz].T,ptemp,20, vmin = vmin, vmax= vmax, clim=[vmin,vmax]) ax2.plot(([mesh.vectorCCx[0],mesh.vectorCCx[-1]]),([mesh.vectorCCy[indy],mesh.vectorCCy[indy]]),color='w') ax2.set_aspect('equal') ax2.xaxis.set_visible(False) ax2.set_xlim(-60,60) ax2.set_ylim(-60,60) ax2.set_title('Induced Model') ax2.set_ylabel('Northing (m)',size=14) ptemp = temp[:,indy,:].T global im3 im3 = ax3.contourf(xx[:,indy,:].T,zz[:,indy,:].T,ptemp,20, vmin = vmin, vmax= vmax, clim=[vmin,vmax]) ax3.set_aspect('equal') ax3.set_xlim(-60,60) ax3.set_ylim(-60,0) ax3.set_title('EW Section') ax3.set_xlabel('Easting (m)',size=14) ax3.set_ylabel('Elevation (m)',size=14) ax4 = fig.add_axes([pos.x0 + 0.75, pos.y0+0.25, pos.height*0.02, pos.height*0.4]) cb = plt.colorbar(im3,cax=ax4, orientation="vertical", ax = ax1, ticks=np.linspace(im3.vmin,im3.vmax, 4), format="${%.3f}$") cb.set_label("Susceptibility (SI)",size=12)
susc = 0.25 vmin, vmax = 0., 0.015 ax1.axis('equal') ax1.set_title('Forward Simulation') # Define the problem interactively p = MAG.definePrism() p.dx, p.dy, p.dz, p.z0 = dx, dy, dz, -depth p.pinc, p.pdec = pinc, pdec srvy = PFlocal.survey() srvy.rx_h, srvy.npts2D, srvy.xylim = rx_h, npts2D, xylim # Create problem prob = PFlocal.problem() prob.prism = p prob.survey = srvy X, Y = np.meshgrid(prob.survey.xr, prob.survey.yr) Z = np.ones(X.shape)*rx_h x, y = MAG.linefun(x1, x2, y1, y2, prob.survey.npts2D) xyz_line = np.c_[x, y, np.ones_like(x)*prob.survey.rx_h] # Create a mesh dx = 5. hxind = [(dx,5,-1.3), (dx, 10), (dx,5,1.3)] hyind = [(dx,5,-1.3), (dx, 10), (dx,5,1.3)] hzind = [(dx,5,-1.3),(dx, 10)]
def animate(ii): removePlt() #ii=1 #inc = 45 #dec = 90 if ii < 18: dec = 90 inc = 0. + ii * 5. elif ii < 36: dec = 270. inc = 90. - (ii - 18) * 5. elif ii < 54: dec = 270. inc = 0. + (ii - 36) * 5. else: dec = 90 inc = 90. - (ii - 54) * 5. ax1.axis('equal') block_xyz = np.asarray([[-.2, -.2, .2, .2, 0], [ -.25, -.25, -.25, -.25, 0.5 ], [-.2, .2, .2, -.2, 0]]) * 10. block_xyz[1][:] -= 20. # rot = Utils.mkvc(Utils.dipazm_2_xyz(pinc, pdec)) # xyz = Utils.rotatePointsFromNormals(block_xyz.T, np.r_[0., 1., 0.], rot, # np.r_[p.xc, p.yc, p.zc]) R = Utils.rotationMatrix(inc, dec) xyz = R.dot(block_xyz).T xyz[:, 2] -= depth + dz / 2. #print xyz # Face 1 ax1.add_collection3d( Poly3DCollection([zip(xyz[:4, 0], xyz[:4, 1], xyz[:4, 2])], facecolors='b')) ax1.add_collection3d( Poly3DCollection( [zip(xyz[[1, 2, 4], 0], xyz[[1, 2, 4], 1], xyz[[1, 2, 4], 2])], facecolors='b')) ax1.add_collection3d( Poly3DCollection( [zip(xyz[[0, 1, 4], 0], xyz[[0, 1, 4], 1], xyz[[0, 1, 4], 2])], facecolors='b')) ax1.add_collection3d( Poly3DCollection( [zip(xyz[[2, 3, 4], 0], xyz[[2, 3, 4], 1], xyz[[2, 3, 4], 2])], facecolors='b')) ax1.add_collection3d( Poly3DCollection( [zip(xyz[[0, 3, 4], 0], xyz[[0, 3, 4], 1], xyz[[0, 3, 4], 2])], facecolors='b')) block_xyz[1][:] += 20. # rot = Utils.mkvc(Utils.dipazm_2_xyz(pinc, pdec)) # xyz = Utils.rotatePointsFromNormals(block_xyz.T, np.r_[0., 1., 0.], rot, # np.r_[p.xc, p.yc, p.zc]) R = Utils.rotationMatrix(rinc, rdec) xyz = R.dot(block_xyz).T xyz[:, 2] -= depth + dz / 2. #print xyz # Face 1 ax1.add_collection3d( Poly3DCollection([zip(xyz[:4, 0], xyz[:4, 1], xyz[:4, 2])], facecolors='y')) ax1.add_collection3d( Poly3DCollection( [zip(xyz[[1, 2, 4], 0], xyz[[1, 2, 4], 1], xyz[[1, 2, 4], 2])], facecolors='y')) ax1.add_collection3d( Poly3DCollection( [zip(xyz[[0, 1, 4], 0], xyz[[0, 1, 4], 1], xyz[[0, 1, 4], 2])], facecolors='y')) ax1.add_collection3d( Poly3DCollection( [zip(xyz[[2, 3, 4], 0], xyz[[2, 3, 4], 1], xyz[[2, 3, 4], 2])], facecolors='y')) ax1.add_collection3d( Poly3DCollection( [zip(xyz[[0, 3, 4], 0], xyz[[0, 3, 4], 1], xyz[[0, 3, 4], 2])], facecolors='y')) MAG.plotObj3D(p, rx_h, View_elev, View_azim, npts2D, xylim, profile="X", fig=fig, axs=ax1, plotSurvey=False) ax1.w_yaxis.set_ticklabels('') ax1.w_yaxis.set_label_text('') ax1.w_zaxis.set_ticklabels('') ax1.w_zaxis.set_label_text('') # Create problem prob = PFlocal.problem() prob.prism = p prob.survey = srvy prob.Bdec, prob.Binc, prob.Bigrf = dec, inc, Bigrf prob.Q, prob.rinc, prob.rdec = Q, rinc, rdec prob.uType, prob.mType = 'tf', 'total' prob.susc = susc # Compute fields from prism b_ind, b_rem = prob.fields() out = b_ind + b_rem #out = plogMagSurvey2D(prob, susc, Einc, Edec, Bigrf, x1, y1, x2, y2, comp, irt, Q, rinc, rdec, fig=fig, axs1=ax2, axs2=ax3) #dat = axs1.contourf(X,Y, np.reshape(out, (X.shape)).T global im1 im1 = ax1.contourf(X, Y, np.reshape(out, (X.shape)).T, 20, zdir='z', offset=rx_h + 5., clim=clim, vmin=clim[0], vmax=clim[1], cmap='RdBu_r') ax5 = fig.add_axes( [pos.x0, pos.y0 + 0.25, pos.height * 0.02, pos.height * 0.4]) cb = plt.colorbar(im1, cax=ax5, orientation="vertical", ax=ax1, ticks=np.linspace(im1.vmin, im1.vmax, 4), format="${%.0f}$") cb.set_label("$B^{TMI}\;(nT)$", size=12) cb.ax.yaxis.set_ticks_position('left') cb.ax.yaxis.set_label_position('left') global im5 im5 = ax1.text(0, 0, -60, '$B_0, I: ' + str(inc) + '^\circ, D: ' + str(dec) + '^\circ$', horizontalalignment='center') H0 = (Bigrf, inc, dec) actv = np.ones(mesh.nC) == 1 # Create active map to go from reduce space to full actvMap = Maps.InjectActiveCells(mesh, actv, -100) nC = len(actv) # Create a MAGsurvey rxLoc = np.c_[Utils.mkvc(X), Utils.mkvc(Y), Utils.mkvc(Z)] rxLoc = PF.BaseMag.RxObs(rxLoc) srcField = PF.BaseMag.SrcField([rxLoc], param=H0) survey = PF.BaseMag.LinearSurvey(srcField) # Create active map to go from reduce set to full actvMap = Maps.InjectActiveCells(mesh, actv, -100) # Creat reduced identity map idenMap = Maps.IdentityMap(nP=3 * nC) # Create the forward model operator #probinv = PF.Magnetics.MagneticIntegral(mesh, mapping = idenMap, actInd = actv) probinv = PF.Magnetics.MagneticVector(mesh, mapping=idenMap, actInd=actv) # Pair the survey and problem survey.pair(probinv) # We can now generate data data = out + np.random.randn( len(out)) # We add some random Gaussian noise (1nT) wd = np.ones(len(data)) * 1. # Assign flat uncertainties # Create distance weights from our linera forward operator wr = np.sum(probinv.G**2., axis=0)**0.5 wr = (wr / np.max(wr)) #survey.makeSyntheticData(data, std=0.01) survey.dobs = data survey.std = wd survey.mtrue = model # Create a regularization reg = Regularization.Sparse(mesh, indActive=actv, mapping=idenMap, nModels=3) reg.cell_weights = wr reg.mref = np.zeros(3 * nC) dmis = DataMisfit.l2_DataMisfit(survey) dmis.Wd = 1 / wd # Add directives to the inversion opt = Optimization.ProjectedGNCG(maxIter=100, lower=-1, upper=1., maxIterLS=20, maxIterCG=10, tolCG=1e-3) invProb = InvProblem.BaseInvProblem(dmis, reg, opt) betaest = Directives.BetaEstimate_ByEig() # Here is where the norms are applied # Use pick a treshold parameter empirically based on the distribution of model # parameters (run last cell to see the histogram before and after IRLS) IRLS = Directives.Update_IRLS(norms=([2, 2, 2, 2]), eps=(1e-4, 1e-4), f_min_change=1e-2, minGNiter=3, beta_tol=1e-2) update_Jacobi = Directives.Update_lin_PreCond() inv = Inversion.BaseInversion(invProb, directiveList=[update_Jacobi, IRLS, betaest]) mrec = inv.run(np.ones(3 * len(actv)) * 1e-4) # Here is the recovered susceptibility model ypanel = midx zpanel = -4 m_lpx = actvMap * mrec[0:nC] m_lpy = actvMap * mrec[nC:2 * nC] m_lpz = actvMap * -mrec[2 * nC:] m_lpx[m_lpx == -100] = np.nan m_lpy[m_lpy == -100] = np.nan m_lpz[m_lpz == -100] = np.nan amp = np.sqrt(m_lpx**2. + m_lpy**2. + m_lpz**2.) m_lpx = (m_lpx / amp).reshape(mesh.vnC, order='F') m_lpy = (m_lpy / amp).reshape(mesh.vnC, order='F') m_lpz = (m_lpz / amp).reshape(mesh.vnC, order='F') amp = amp.reshape(mesh.vnC, order='F') sub = 2 # m_true = actvMap * model # m_true[m_true==-100] = np.nan #Plot L2 model # global im2 xx, zz = mesh.gridCC[:, 0].reshape( mesh.vnC, order="F"), mesh.gridCC[:, 2].reshape(mesh.vnC, order="F") yy = mesh.gridCC[:, 1].reshape(mesh.vnC, order="F") #ptemp = ma.array(ptemp ,mask=np.isnan(ptemp)) global im2 im2 = ax2.contourf(xx[:, :, zpanel].T, yy[:, :, zpanel].T, amp[:, :, zpanel].T, 40, vmin=vmin, vmax=vmax, clim=[vmin, vmax]) global im4 im4 = ax2.quiver(mkvc(xx[::sub, ::sub, zpanel].T), mkvc(yy[::sub, ::sub, zpanel].T), mkvc(m_lpx[::sub, ::sub, zpanel].T), mkvc(m_lpy[::sub, ::sub, zpanel].T), pivot='mid', units="xy", scale=0.2, linewidths=(1, ), edgecolors=('k'), headaxislength=0.1, headwidth=10, headlength=30) ax2.set_aspect('equal') ax2.xaxis.set_visible(False) ax2.set_xlim(-60, 60) ax2.set_ylim(-60, 60) ax2.set_title('Effective Susceptibility') ax2.set_ylabel('Northing (m)', size=14) global im3 im3 = ax3.contourf(xx[:, ypanel, :].T, zz[:, ypanel, :].T, amp[:, ypanel, :].T, 40, vmin=vmin, vmax=vmax, clim=[vmin, vmax]) global im6 im6 = ax3.quiver(mkvc(xx[::sub, ypanel, ::sub].T), mkvc(zz[::sub, ypanel, ::sub].T), mkvc(m_lpx[::sub, ypanel, ::sub].T), mkvc(m_lpz[::sub, ypanel, ::sub].T), pivot='mid', units="xy", scale=0.2, linewidths=(1, ), edgecolors=('k'), headaxislength=0.1, headwidth=10, headlength=30) ax3.set_aspect('equal') ax3.set_xlim(-60, 60) ax3.set_ylim(-60, 0) ax3.set_title('EW Section') ax3.set_xlabel('Easting (m)', size=14) ax3.set_ylabel('Elevation (m)', size=14) ax4 = fig.add_axes( [pos.x0 + 0.75, pos.y0 + 0.25, pos.height * 0.02, pos.height * 0.4]) cb = plt.colorbar(im3, cax=ax4, orientation="vertical", ax=ax1, ticks=np.linspace(im3.vmin, im3.vmax, 4), format="${%.3f}$") cb.set_label("$\kappa_{e}$ (SI)", size=12)
def plotProfile(p, data, Binc, Bdec, Bigrf, susc, Q, rinc, rdec): if data is 'MonSt': filename = "data/StudentData2015_Monday.csv" elif data is 'WedSt': filename = "data/StudentData2015_Wednesday.csv" elif data is 'WedTA': filename = "data/TAData2015_Wednesday.csv" dat = pd.DataFrame(pd.read_csv(filename, header=0)) tf = dat["Corrected Total Field Data (nT)"].values std = dat["Standard Deviation (nT)"].values loc = dat["Location (m)"].values teams = dat["Team"].values tfa = tf - Bigrf nx, ny = 100, 1 shape = (nx, ny) xLoc = np.linspace(xlim[0], xlim[1], nx) zLoc = np.ones(np.shape(xLoc)) * rx_h yLoc = np.zeros(np.shape(xLoc)) #xpl, ypl, zpl = fatiandoGridMesh.regular(surveyArea,shape, z=z) rxLoc = np.c_[Utils.mkvc(xLoc), Utils.mkvc(yLoc), Utils.mkvc(zLoc)] prob1D = MAG.problem() srvy1D = MAG.survey() srvy1D._rxLoc = rxLoc prob1D.prism = p prob1D.survey = srvy1D prob1D.Bdec, prob1D.Binc, prob1D.Bigrf = Bdec, Binc, Bigrf prob1D.Q, prob1D.rinc, prob1D.rdec = Q, rinc, rdec prob1D.uType, prob1D.mType = 'tf', 'total' prob1D.susc = susc # Compute fields from prism magi, magr = prob1D.fields() #out_linei, out_liner = getField(p, xyz_line, comp, 'total') #out_linei = getField(p, xyz_line, comp,'induced') #out_liner = getField(p, xyz_line, comp,'remanent') # distance = np.sqrt((x-x1)**2.+(y-y1)**2.) f = plt.figure(figsize=(10, 5)) gs = gridspec.GridSpec(2, 1, height_ratios=[2, 1]) ax0 = plt.subplot(gs[0]) ax1 = plt.subplot(gs[1]) ax1.plot(p.x0, p.z0, 'ko') ax1.text(p.x0 + 0.5, p.z0, 'Rebar', color='k') ax1.text(xlim[0] + 1., -1.2, 'Magnetometer height (1.9 m)', color='b') ax1.plot(xlim, np.r_[-rx_h, -rx_h], 'b--') # magi,magr = getField(p, rxLoc, 'bz', 'total') ax1.plot(xlim, np.r_[0., 0.], 'k--') ax1.set_xlim(xlim) ax1.set_ylim(-2.5, 2.5) ax0.scatter(loc, tfa, c=teams) ax0.errorbar(loc, tfa, yerr=std, linestyle="None", color="k") ax0.set_xlim(xlim) ax0.grid(which="both") ax0.plot(xLoc, magi, 'b', label='induced') ax0.plot(xLoc, magr, 'r', label='remnant') ax0.plot(xLoc, magi + magr, 'k', label='total') ax0.legend(loc=2) # ax[1].plot(loc-8, magnT[::-1], ) ax1.set_xlabel("Northing (m)") ax1.set_ylabel("Depth (m)") ax0.set_ylabel("Total field anomaly (nT)") ax0.grid(True) ax0.set_xlabel("Northing (m)") ax1.grid(True) ax1.set_xlabel("Northing (m)") ax1.invert_yaxis() plt.tight_layout() plt.show() return True
def plogMagSurvey2D(prob2D, susc, Einc, Edec, Bigrf, x1, y1, x2, y2, comp, irt, Q, rinc, rdec, fig=None, axs1=None, axs2=None): import matplotlib.gridspec as gridspec # The MAG problem created is stored in result[1] # prob2D = Box.result[1] if fig is None: fig = plt.figure(figsize=(18 * 1.5, 3.4 * 1.5)) plt.rcParams.update({'font.size': 14}) gs1 = gridspec.GridSpec(2, 7) gs1.update(left=0.05, right=0.48, wspace=0.05) if axs1 is None: axs1 = plt.subplot(gs1[:2, :3]) if axs2 is None: axs2 = plt.subplot(gs1[0, 4:]) axs1.axis("equal") prob2D.Bdec, prob2D.Binc, prob2D.Bigrf = Edec, Einc, Bigrf prob2D.Q, prob2D.rinc, prob2D.rdec = Q, rinc, rdec prob2D.uType, prob2D.mType = comp, 'total' prob2D.susc = susc # Compute fields from prism b_ind, b_rem = prob2D.fields() if irt == 'total': out = b_ind + b_rem elif irt == 'induced': out = b_ind else: out = b_rem X, Y = np.meshgrid(prob2D.survey.xr, prob2D.survey.yr) dat = axs1.contourf(X, Y, np.reshape(out, (X.shape)).T, 25) cb = plt.colorbar(dat, ax=axs1, ticks=np.linspace(out.min(), out.max(), 5)) cb.set_label("nT") axs1.plot(X, Y, '.k') # Compute fields on the line by creating a similar mag problem x, y = linefun(x1, x2, y1, y2, prob2D.survey.npts2D) xyz_line = np.c_[x, y, np.ones_like(x) * prob2D.survey.rx_h] # Create problem prob1D = MAG.problem() srvy1D = MAG.survey() srvy1D._rxLoc = xyz_line prob1D.prism = prob2D.prism prob1D.survey = srvy1D prob1D.Bdec, prob1D.Binc, prob1D.Bigrf = Edec, Einc, Bigrf prob1D.Q, prob1D.rinc, prob1D.rdec = Q, rinc, rdec prob1D.uType, prob1D.mType = comp, 'total' prob1D.susc = susc # Compute fields from prism out_linei, out_liner = prob1D.fields() #out_linei, out_liner = getField(p, xyz_line, comp, 'total') #out_linei = getField(p, xyz_line, comp,'induced') #out_liner = getField(p, xyz_line, comp,'remanent') out_linet = out_linei + out_liner distance = np.sqrt((x - x1)**2. + (y - y1)**2.) axs1.plot(x, y, 'w.', ms=3) axs1.text(x[0], y[0], 'A', fontsize=16, color='w') axs1.text(x[-1], y[-1], 'B', fontsize=16, color='w', horizontalalignment='right') axs1.set_xlabel('Easting (X; m)') axs1.set_ylabel('Northing (Y; m)') axs1.set_xlim(X.min(), X.max()) axs1.set_ylim(Y.min(), Y.max()) axs1.set_title(irt + ' ' + comp) axs2.plot(distance, out_linei, 'b.-') axs2.plot(distance, out_liner, 'r.-') axs2.plot(distance, out_linet, 'k.-') axs2.set_xlim(distance.min(), distance.max()) axs2.set_xlabel("Distance (m)") axs2.set_ylabel("Magnetic field (nT)") axs2.text(distance.min(), out_linei.max() * 0.8, 'A', fontsize=16) axs2.text(distance.max() * 0.97, out_linei.max() * 0.8, 'B', fontsize=16) axs2.legend(("induced", "remanent", "total"), bbox_to_anchor=(0.5, -0.3)) axs2.grid(True) plt.show() return True