def main(open_plot=True): # Taxi initial state attributes.. agent = {"x": 1, "y": 1, "has_passenger": 0} passengers = [{"x": 3, "y": 2, "dest_x": 2, "dest_y": 3, "in_taxi": 0}] walls = [] mdp = TaxiOOMDP(width=4, height=4, agent=agent, walls=walls, passengers=passengers) # Agents. ql_agent = QLearningAgent(actions=mdp.get_actions()) rand_agent = RandomAgent(actions=mdp.get_actions()) viz = False if viz: # Visualize Taxi. run_single_agent_on_mdp(ql_agent, mdp, episodes=50, steps=1000) mdp.visualize_agent(ql_agent) else: # Run experiment and make plot. run_agents_on_mdp([ql_agent, rand_agent], mdp, instances=10, episodes=1, steps=500, reset_at_terminal=True, open_plot=open_plot)
def main(open_plot=True): # Taxi initial state attributes.. agent = {"x":1, "y":1, "has_passenger":0} passengers = [{"x":3, "y":2, "dest_x":2, "dest_y":3, "in_taxi":0}] walls = [] mdp = TaxiOOMDP(width=4, height=4, agent=agent, walls=walls, passengers=passengers) # Agents. ql_agent = QLearningAgent(actions=mdp.get_actions()) rand_agent = RandomAgent(actions=mdp.get_actions()) viz = False if viz: # Visualize Taxi. run_single_agent_on_mdp(ql_agent, mdp, episodes=50, steps=1000) mdp.visualize_agent(ql_agent) else: # Run experiment and make plot. run_agents_on_mdp([ql_agent, rand_agent], mdp, instances=10, episodes=1, steps=500, reset_at_terminal=True, open_plot=open_plot)
import srl_example_setup from simple_rl.agents import QLearnerAgent, RandomAgent from simple_rl.tasks import TaxiOOMDP, BlockDudeOOMDP from simple_rl.run_experiments import run_agents_on_mdp, run_single_agent_on_mdp # Taxi initial state attributes.. agent = {"x": 1, "y": 1, "has_passenger": 0} passengers = [{"x": 3, "y": 2, "dest_x": 2, "dest_y": 3, "in_taxi": 0}] walls = [] mdp = TaxiOOMDP(width=4, height=4, agent=agent, walls=walls, passengers=passengers) ql_agent = QLearnerAgent(actions=mdp.get_actions()) rand_agent = RandomAgent(actions=mdp.get_actions()) viz = False if viz: # Visualize Taxi. run_single_agent_on_mdp(ql_agent, mdp, episodes=50, steps=1000) mdp.visualize_agent(ql_agent) else: # Run experiment and make plot. run_agents_on_mdp([ql_agent, rand_agent], mdp, instances=10, episodes=100, steps=150, reset_at_terminal=True)