Пример #1
0
def test_marg():
    spn = example_spns.get_gender_spn()

    spn1 = fn.marg(spn, [2])
    fn.plot_spn(spn1, "marg1.pdf")

    spn2 = fn.marg(spn, [0])
    fn.plot_spn(spn2, "marg2.pdf")

    spn3 = fn.marg(spn, [1])
    fn.plot_spn(spn3, "marg3.pdf")

    spn4 = fn.marg(spn, [1, 2])
    fn.plot_spn(spn4, "marg4.pdf")

    rang = [None, NominalRange([1]), None]
    prob, spn5 = fn.marg_rang(spn, rang)
    fn.plot_spn(spn5, "marg5.pdf")

    rang = [None, NominalRange([1]), NumericRange([[10, 12]])]
    prob, spn6 = fn.marg_rang(spn, rang)
    fn.plot_spn(spn6, "marg6.pdf")

    rang = [NominalRange([0]), NominalRange([1]), None]
    prob = fn.prob(spn, rang)
    print(prob)
    prob = fn.prob(spn6, rang)
    print(prob)
def feature_importance(spn, target_id, rang=None, value_dict=None, numeric_prec=50):
    
    if value_dict is None : value_dict = fn.generate_adhoc_value_dict(spn)
    if rang is not None : assert(rang[target_id] is None)
    if rang is not None: _, spn = fn.marg_rang(spn, rang)
    
    n_vals = len(value_dict[target_id][2])
    
    
    overall_pops = []
    for v in range(n_vals):
        tmp_rang = [None] * (np.max(spn.scope)+1)
        tmp_rang[target_id] = NominalRange([v])
        p, spn1 = fn.marg_rang(spn, tmp_rang)
        overall_pop = fn.get_overall_population(spn1, value_dict=value_dict, numeric_prec=numeric_prec)
        overall_pops.append([p, overall_pop])
    
    fis = []
    for f_id in spn1.scope:
        dists = [[p, overall_pop[f_id]] for p, overall_pop in overall_pops]
        fi = _compare_distributions(dists, value_dict[f_id])
        fis.append(fi)
    
    return fis  
Пример #3
0
def visualize_likeliness_heatmap(spn,
                                 target_id_x,
                                 target_id_y,
                                 value_dict=None,
                                 rang=None,
                                 numeric_intervals=10,
                                 save_path=None):

    if value_dict is None: value_dict = fn.generate_adhoc_value_dict(spn)
    if rang is not None: spn = fn.marg_rang(spn, rang)
    assert (target_id_x in spn.scope and target_id_y in spn.scope)

    _, axes = plt.subplots(1, 1, figsize=(10, 5), squeeze=False)
    ax = axes[0][0]

    x_conds, x_labels = _generate_conds(target_id_x, value_dict,
                                        numeric_intervals)
    y_conds, y_labels = _generate_conds(target_id_y, value_dict,
                                        numeric_intervals)

    ranges = []
    for y_cond in y_conds:
        for x_cond in x_conds:
            r = [None] * (np.max(spn.scope) + 1)
            r[target_id_x] = x_cond
            r[target_id_y] = y_cond
            ranges.append(r)

    data = fn.probs(spn, ranges).reshape((len(y_conds), len(x_conds)))
    viz_helper.heatmap_plot(ax,
                            data,
                            x_labels,
                            y_labels,
                            x_label=value_dict[target_id_x][1],
                            y_label=value_dict[target_id_y][1])

    plt.tight_layout()

    if save_path is None:
        plt.show()
    else:
        plt.savefig(save_path)
Пример #4
0
def visualize_overall_distribution(spn,
                                   value_dict=None,
                                   rang=None,
                                   numeric_prec=50,
                                   save_path=None):

    if value_dict is None: value_dict = fn.generate_adhoc_value_dict(spn)
    if rang is not None: _, spn = fn.marg_rang(spn, rang)
    overall_population = fn.get_overall_population(spn,
                                                   value_dict=value_dict,
                                                   numeric_prec=numeric_prec)

    ncols = len(spn.scope)
    nrows = 1
    figsize_x = ncols * 3
    figsize_y = nrows * 3
    fig, axes = plt.subplots(nrows,
                             ncols,
                             figsize=(figsize_x, figsize_y),
                             squeeze=False)

    for i, f_id in enumerate(sorted(list(overall_population))):
        dist = overall_population[f_id]

        if dist["feature_type"] == "discrete":
            viz_helper.bar_plot(axes[0][i],
                                dist["y_means"],
                                dist["x_labels"],
                                y_err=np.sqrt(dist["y_vars"]),
                                y_label="probability",
                                ylim=[0, 1])

        elif dist["feature_type"] == "numeric":
            viz_helper.line_plot(axes[0][i],
                                 dist["x_vals"],
                                 dist["y_means"],
                                 y_errs=np.sqrt(dist["y_vars"]),
                                 y_label="density")
        else:
            raise Exception("Unknown attribute-type: " +
                            str(value_dict[dist.scope[0]]))

    pad_col = 5
    feature_names = [value_dict[x][1] for x in sorted(spn.scope)]
    for ax, col in zip(axes[0], feature_names):
        ax.annotate(col,
                    xy=(0.5, 1),
                    xytext=(0, pad_col),
                    xycoords='axes fraction',
                    textcoords='offset points',
                    size='large',
                    ha='center',
                    va='baseline')

    plt.tight_layout()
    fig.subplots_adjust(top=0.9)

    if save_path is None:
        plt.show()
    else:
        plt.savefig(save_path)
Пример #5
0
def visualized_target_based_expected_sub_populations(spn,
                                                     target_id,
                                                     value_dict=None,
                                                     top=None,
                                                     rang=None,
                                                     numeric_prec=10,
                                                     save_path=None):

    if value_dict is None: value_dict = fn.generate_adhoc_value_dict(spn)
    if rang is not None: spn = fn.marg_rang(spn, rang)

    n_vals = len(value_dict[target_id][2])

    ps = []
    all_lines = []
    for v in range(n_vals):

        tmp_rang = [None] * (np.max(spn.scope) + 1)
        tmp_rang[target_id] = NominalRange([v])
        p, spn1 = fn.marg_rang(spn, tmp_rang)
        ps.append(p)
        sub_pops = fn.get_sub_populations(spn1, sort=True, top=top)
        sub_pops = [[p * p1, dists] for p1, dists in sub_pops]

        lines = []
        for [p, dists] in sub_pops:
            line = []
            for dist in dists:
                f_id = dist.scope[0]

                if value_dict[f_id][0] == "discrete":
                    rang = [None] * (np.max(spn.scope) + 1)
                    expect = fn.expect(dist, f_id, rang)
                    y_val = np.linspace(0, 1,
                                        len(value_dict[f_id][2]))[int(expect)]
                    line.append(y_val)

                elif value_dict[f_id][0] == "numeric":
                    rang = [None] * (np.max(spn.scope) + 1)
                    expect = fn.expect(dist, f_id, rang)

                    mi = value_dict[f_id][2][0]
                    ma = value_dict[f_id][2][1]
                    y_val = (expect - mi) / (ma - mi)
                    line.append(y_val)
                else:
                    raise Exception("Unknown attribute-type: " +
                                    str(value_dict[dist.scope[0]]))

            lines.append([p, line])
        all_lines.append(lines)

    fig, axes = plt.subplots(n_vals,
                             1,
                             figsize=(16, 6 * n_vals),
                             squeeze=False)
    for i, lines in enumerate(all_lines):

        plot = axes[i][0]
        plot.set_yticklabels([])
        for [p, line] in lines:
            x_vals = []
            y_vals = []
            for i in range(len(line) - 1):
                y_val = line[i]
                next_y_val = line[i + 1]

                for r in np.linspace(0, 1, numeric_prec):
                    x_vals.append(i + r)
                    y_vals.append(y_val + (next_y_val - y_val) * r +
                                  np.random.normal() * 0.025)

            plot.plot(x_vals, y_vals, linewidth=p * 100)

        x_feature_ids = sorted(list(set(spn.scope) - set([target_id])))
        plot.set_xticks(np.arange(len(x_feature_ids)))
        if value_dict is not None:
            plot.set_xticklabels(
                [value_dict[scope][1] for scope in x_feature_ids])

        for j, feature_id in enumerate(x_feature_ids):

            if value_dict[feature_id][0] == "discrete":
                for i, y_val in enumerate(
                        np.linspace(0, 1, len(value_dict[feature_id][2]))):
                    val_name = value_dict[feature_id][2][i]
                    plot.text(j, y_val, val_name)
            elif value_dict[feature_id][0] == "numeric":
                mi = value_dict[feature_id][2][0]
                ma = value_dict[feature_id][2][1]
                for i, y_val in enumerate(np.linspace(0, 1, 5)):
                    val_name = round(y_val * (ma - mi) + mi, 4)
                    plot.text(j, y_val, val_name)
            else:
                raise Exception(
                    "Not implemented for other than discrete or numeric")

    pad_row = 5
    for i, (ax, p) in enumerate(zip(axes[:, 0], ps)):
        info = value_dict[target_id][1] + "=" + value_dict[target_id][2][
            i] + " " + str(round(p * 100, 4)) + "%\n"
        ax.annotate(info,
                    xy=(0, 0.5),
                    xytext=(-ax.yaxis.labelpad - pad_row, 0),
                    xycoords=ax.yaxis.label,
                    textcoords='offset points',
                    size='large',
                    ha='right',
                    va='center')
    plt.tight_layout()
    fig.subplots_adjust(left=0.15)

    if save_path is None:
        plt.show()
    else:
        plt.savefig(save_path)
Пример #6
0
def visualize_expected_sub_populations(spn,
                                       value_dict=None,
                                       top=None,
                                       rang=None,
                                       numeric_prec=10,
                                       save_path=None):

    if value_dict is None: value_dict = fn.generate_adhoc_value_dict(spn)
    if rang is not None: spn = fn.marg_rang(spn, rang)
    sub_pops = fn.get_sub_populations(spn, sort=True, top=top)

    fig, axes = plt.subplots(1, 1, figsize=(16, 6), squeeze=False)

    lines = []
    for [prob, dists] in sub_pops:
        line = []
        for dist in dists:
            f_id = dist.scope[0]

            if value_dict[f_id][0] == "discrete":
                rang = [None] * (np.max(spn.scope) + 1)
                expect = fn.expect(dist, f_id, rang)
                y_val = np.linspace(0, 1,
                                    len(value_dict[f_id][2]))[int(expect)]
                line.append(y_val)

            elif value_dict[f_id][0] == "numeric":
                rang = [None] * (np.max(spn.scope) + 1)
                expect = fn.expect(dist, f_id, rang)

                mi = value_dict[f_id][2][0]
                ma = value_dict[f_id][2][1]
                y_val = (expect - mi) / (ma - mi)
                line.append(y_val)
            else:
                raise Exception("Unknown attribute-type: " +
                                str(value_dict[dist.scope[0]]))

        lines.append([prob, line])

    plot = axes[0][0]
    plot.set_yticklabels([])
    for [prob, line] in lines:
        x_vals = []
        y_vals = []
        for i in range(len(line) - 1):
            y_val = line[i]
            next_y_val = line[i + 1]
            for r in np.linspace(0, 1, numeric_prec):
                x_vals.append(i + r)
                y_vals.append(y_val + (next_y_val - y_val) * r +
                              np.random.normal() * 0.025)

        plot.plot(x_vals, y_vals, linewidth=prob * 100)
    plot.set_xticks(np.arange(len(spn.scope)))
    if value_dict is not None:
        plot.set_xticklabels([value_dict[scope][1] for scope in spn.scope])

    for j, feature_id in enumerate(spn.scope):

        if value_dict[feature_id][0] == "discrete":
            for i, y_val in enumerate(
                    np.linspace(0, 1, len(value_dict[feature_id][2]))):
                val_name = value_dict[feature_id][2][i]
                plot.text(j, y_val, val_name)
        elif value_dict[feature_id][0] == "numeric":
            mi = value_dict[feature_id][2][0]
            ma = value_dict[feature_id][2][1]
            for i, y_val in enumerate(np.linspace(0, 1, 5)):
                val_name = round(y_val * (ma - mi) + mi, 4)
                plot.text(j, y_val, val_name)
        else:
            raise Exception(
                "Not implemented for other than discrete or numeric")

    plt.tight_layout()

    if save_path is None:
        plt.show()
    else:
        plt.savefig(save_path)
Пример #7
0
def visualize_target_based_conds_overall_distribution_compact(
        spn,
        target_conds,
        value_dict=None,
        rang=None,
        target_names=None,
        numeric_prec=50,
        save_path=None):
    '''
    TODOOOO
    '''

    if value_dict is None: value_dict = fn.generate_adhoc_value_dict(spn)
    target_ids = set([cond for conds in target_conds for cond in conds])
    if rang is not None:
        for conds in target_conds:
            for target_id in conds:
                assert (rang[target_id] is None)
    if rang is not None: _, spn = fn.marg_rang(spn, rang)

    n_vals = len(target_conds)

    ncols = len(spn.scope) - 1
    nrows = 1
    figsize_x = ncols * 3
    figsize_y = nrows * 3
    fig, axes = plt.subplots(nrows,
                             ncols,
                             figsize=(figsize_x, figsize_y),
                             squeeze=False)

    ps = []
    plot_data = {f_id: [] for f_id in spn.scope if f_id not in target_ids}
    for v in range(n_vals):
        tmp_rang = [None] * (np.max(spn.scope) + 1)
        for target_id, cond in target_conds[v].items():
            tmp_rang[target_id] = cond

        p, spn1 = fn.marg_rang(spn, tmp_rang)
        ps.append(p)
        overall_population = fn.get_overall_population(
            spn1, value_dict=value_dict, numeric_prec=numeric_prec)
        for f_id in spn1.scope:
            plot_data[f_id].append(overall_population[f_id])

    for i, f_id in enumerate(plot_data):

        if value_dict[f_id][0] == "discrete":
            y_means = []
            y_errs = []
            for j, dist in enumerate(plot_data[f_id]):
                y_means.append(dist["y_means"])
                y_errs.append(dist["y_vars"])
            #viz_helper.multiple_bar_plot(axes[0][i], y_means, dist["x_labels"], y_errs=np.sqrt(y_errs), legend_labels=target_names, y_label="probability", ylim=[0,1])
            viz_helper.multiple_bar_plot(axes[0][i],
                                         y_means,
                                         dist["x_labels"],
                                         legend_labels=target_names,
                                         y_label="probability",
                                         ylim=[0, 1])

        elif value_dict[f_id][0] == "numeric":
            for j, dist in enumerate(plot_data[f_id]):
                #viz_helper.line_plot(axes[0][i], dist["x_vals"], dist["y_means"], y_errs=np.sqrt(dist["y_vars"]), label=target_names[j], y_label="density")
                viz_helper.line_plot(axes[0][i],
                                     dist["x_vals"],
                                     dist["y_means"],
                                     label=target_names[j],
                                     y_label="density")
        else:
            raise Exception("Unknown attribute-type: " +
                            str(value_dict[dist.scope[0]]))

    pad_col = 5
    feature_names = [value_dict[x][1] for x in sorted(spn1.scope)]
    for ax, col in zip(axes[0], feature_names):
        ax.annotate(col,
                    xy=(0.5, 1),
                    xytext=(0, pad_col),
                    xycoords='axes fraction',
                    textcoords='offset points',
                    size='large',
                    ha='center',
                    va='baseline')

    #pad_row = 5
    #info = ""
    #for i, prob in enumerate(ps):
    #    info += str(value_dict[target_id][1]) + "=" + str(value_dict[target_id][2][i]) + " " + str(round(prob*100,4)) + "%\n"
    #axes[0][0].annotate(info, xy=(0, 0.5), xytext=(-axes[0][0].yaxis.labelpad - pad_row, 0), xycoords=axes[0][0].yaxis.label, textcoords='offset points', size='large', ha='right', va='center')
    axes[0][0].legend(loc='upper center', bbox_to_anchor=(0.5, -0.25))
    plt.tight_layout()
    #fig.subplots_adjust(left=0.15, top=0.9)

    if save_path is None:
        plt.show()
    else:
        plt.savefig(save_path)
Пример #8
0
def visualize_target_based_overall_distribution_single(spn,
                                                       target_id,
                                                       value_dict=None,
                                                       rang=None,
                                                       numeric_prec=50,
                                                       save_path=None):

    if value_dict is None: value_dict = fn.generate_adhoc_value_dict(spn)
    if rang is not None: assert (rang[target_id] is None)
    if rang is not None: _, spn = fn.marg_rang(spn, rang)

    n_vals = len(value_dict[target_id][2])

    ncols = len(spn.scope) - 1
    nrows = n_vals
    figsize_x = ncols * 3
    figsize_y = nrows * 2
    fig, axes = plt.subplots(nrows,
                             ncols,
                             figsize=(figsize_x, figsize_y),
                             squeeze=False)

    ps = []
    for v in range(n_vals):
        tmp_rang = [None] * (np.max(spn.scope) + 1)
        tmp_rang[target_id] = NominalRange([v])

        p, spn1 = fn.marg_rang(spn, tmp_rang)
        ps.append(p)
        overall_population = fn.get_overall_population(
            spn1, value_dict=value_dict, numeric_prec=numeric_prec)

        for i, f_id in enumerate(sorted(spn1.scope)):
            dist = overall_population[f_id]

            if dist["feature_type"] == "discrete":
                viz_helper.bar_plot(axes[v][i],
                                    dist["y_means"],
                                    dist["x_labels"],
                                    y_err=np.sqrt(dist["y_vars"]),
                                    y_label="probability",
                                    ylim=[0, 1])

            elif dist["feature_type"] == "numeric":
                viz_helper.line_plot(axes[v][i],
                                     dist["x_vals"],
                                     dist["y_means"],
                                     y_errs=np.sqrt(dist["y_vars"]),
                                     y_label="density")
            else:
                raise Exception("Unknown attribute-type: " +
                                str(value_dict[dist.scope[0]]))

    pad_col = 5
    feature_names = [value_dict[x][1] for x in sorted(spn1.scope)]
    for ax, col in zip(axes[0], feature_names):
        ax.annotate(col,
                    xy=(0.5, 1),
                    xytext=(0, pad_col),
                    xycoords='axes fraction',
                    textcoords='offset points',
                    size='large',
                    ha='center',
                    va='baseline')

    pad_row = 5
    for i, p in enumerate(ps):
        axes[i][0].annotate(str(round(p * 100, 4)) + "%\n" +
                            value_dict[target_id][1] + "=" +
                            value_dict[target_id][2][i],
                            xy=(0, 0.5),
                            xytext=(-axes[i][0].yaxis.labelpad - pad_row, 0),
                            xycoords=axes[i][0].yaxis.label,
                            textcoords='offset points',
                            size='large',
                            ha='right',
                            va='center')

    plt.tight_layout()
    fig.subplots_adjust(left=0.15, top=0.9)

    if save_path is None:
        plt.show()
    else:
        plt.savefig(save_path)
Пример #9
0
def visualize_sub_populations(spn,
                              value_dict=None,
                              top=None,
                              rang=None,
                              numeric_prec=50,
                              save_path=None):

    if value_dict is None: value_dict = fn.generate_adhoc_value_dict(spn)
    if rang is not None: spn = fn.marg_rang(spn, rang)
    sub_pops = fn.get_sub_populations(spn, sort=True, top=top)

    ncols = len(spn.scope)
    nrows = len(sub_pops)
    figsize_x = ncols * 3
    figsize_y = nrows * 2
    fig, axes = plt.subplots(nrows,
                             ncols,
                             figsize=(figsize_x, figsize_y),
                             squeeze=False)

    for i, [_, dists] in enumerate(sub_pops):
        for j, dist in enumerate(dists):
            f_id = dist.scope[0]
            if value_dict[f_id][0] == "discrete":

                val_pairs = sorted(value_dict[f_id][2].items(),
                                   key=lambda x: x[0])
                y_vals = fn.evaluate_discrete_leaf(
                    dist, f_vals=[x[0] for x in val_pairs])
                viz_helper.bar_plot(axes[i][j],
                                    y_vals,
                                    x_tick_labels=[x[1] for x in val_pairs],
                                    y_label="probability",
                                    ylim=[0, 1])

            elif value_dict[f_id][0] == "numeric":

                x_vals = np.linspace(value_dict[f_id][2][0],
                                     value_dict[f_id][2][1],
                                     num=numeric_prec)
                y_vals = fn.evaluate_numeric_density_leaf(dist, x_vals)
                viz_helper.line_plot(axes[i][j],
                                     x_vals,
                                     y_vals,
                                     y_label="density")

            else:
                raise Exception("Unknown attribute-type: " +
                                str(value_dict[dist.scope[0]]))

    pad_col = 5
    if value_dict is None:
        feature_names = ["Feature " + str(x) for x in sorted(spn.scope)]
    else:
        feature_names = [value_dict[x][1] for x in sorted(spn.scope)]
    for ax, col in zip(axes[0], feature_names):
        ax.annotate(col,
                    xy=(0.5, 1),
                    xytext=(0, pad_col),
                    xycoords='axes fraction',
                    textcoords='offset points',
                    size='large',
                    ha='center',
                    va='baseline')
    pad_row = 5
    for ax, row in zip(axes[:, 0], [round(x, 6) for [x, _] in sub_pops]):
        ax.annotate(row,
                    xy=(0, 0.5),
                    xytext=(-ax.yaxis.labelpad - pad_row, 0),
                    xycoords=ax.yaxis.label,
                    textcoords='offset points',
                    size='large',
                    ha='right',
                    va='center')
    plt.tight_layout()
    fig.subplots_adjust(left=0.15, top=0.95)

    if save_path is None:
        plt.show()
    else:
        plt.savefig(save_path)
Пример #10
0
    #Marguinalize SPN
    spn1 = fn.marg(spn, [2])
    fn.plot_spn(spn1, "marg1.pdf")

    spn2 = fn.marg(spn, [0])
    fn.plot_spn(spn2, "marg2.pdf")

    spn3 = fn.marg(spn, [1])
    fn.plot_spn(spn3, "marg3.pdf")

    spn4 = fn.marg(spn, [1, 2])
    fn.plot_spn(spn4, "marg4.pdf")

    rang = [None, NominalRange([1]), None]
    prob, spn5 = fn.marg_rang(spn, rang)
    fn.plot_spn(spn5, "marg5.pdf")

    rang = [None, NominalRange([1]), NumericRange([[10, 12]])]
    prob, spn6 = fn.marg_rang(spn, rang)
    fn.plot_spn(spn6, "marg6.pdf")

    rang = [NominalRange([0]), NominalRange([1]), None]
    prob = fn.prob(spn, rang)
    print(prob)
    prob = fn.prob(spn6, rang)
    print(prob)

    #Expectation
    rang = [None, None, None]
    expect = fn.expect(spn, feature_id=2, rang=rang)