Пример #1
0
 def process(self, filepath):
     img = Image(filepath)  # load the image into SimpleCV
     # ~ img = img.edges() # Get the edges
     img.save(filepath)  # save the temporary image
     self.imageset.append(img.get_pil())
     writeGif(self.giffile, self.imageset, 0.2, 9999)
     return
Пример #2
0
 def __init__(self):
     super(ColorSegmentationWindow, self).__init__('Color Segmentation Example')
     self.img = Image('simplecv')
     self.segmentation = ColorSegmentation()
     self.normal = True  # mode toggle for segment detection
     self.point1 = (0, 0)
     self.point2 = (0, 0)
     self.mosue_down = False
Пример #3
0
class EdgeSnapWindow(Window):
    def __init__(self):
        super(EdgeSnapWindow, self).__init__('Color Segmentation Example')
        self.image = Image("shapes.png", sample=True).edges()
        self.points = []

        self.show(self.image)

    def on_mouse(self, event, x, y, mouse_key, data=None):
        """ Callback for mouse events

            event - int - see cv2.EVENT_* constants
            x, y - int, int - position of the cursor
            mouse_key - int - mouse key
        """
        if event == cv2.EVENT_LBUTTONDOWN:
            self.points.append((x, y))

            self.image.clear_layers()
            for p in self.points:
                self.image.dl().circle(p, 5, color=Color.BLUE)

            features = self.image.edge_snap(self.points)

            for f in features:
                f.draw(color=Color.RED, width=2)

            self.show(self.image.apply_layers())

    def on_key(self, key):
        if key == 32:  # Space bar to clear points
            self.points = []
            self.image.clear_layers()
            self.show(self.image)
            print "Points cleared"
Пример #4
0
class ColorSegmentationWindow(Window):

    def __init__(self):
        super(ColorSegmentationWindow, self).__init__('Color Segmentation Example')
        self.img = Image('simplecv')
        self.segmentation = ColorSegmentation()
        self.normal = True  # mode toggle for segment detection
        self.point1 = (0, 0)
        self.point2 = (0, 0)
        self.mosue_down = False

    def on_mouse(self, event, x, y, mouse_key, data=None):
        """ Callback for mouse events

            event - int - see cv2.EVENT_* constants
            x, y - int, int - position of the cursor
            mouse_key - int - mouse key
        """
        if event == cv2.EVENT_LBUTTONDOWN:
            self.point1 = (x, y)
            self.point2 = (x, y)
            self.mosue_down = True
        elif event == cv2.EVENT_MOUSEMOVE:
            if self.mosue_down == True:
                self.point2 = (x, y)
        elif event == cv2.EVENT_LBUTTONUP:
            self.mosue_down = False
            self.point2 = (x, y)

            x1, y1, w, h = points_to_roi(self.point1, self.point2)
            if w > 0 and h > 0:
                crop = self.img.crop(x1, y1, w, h)
                self.segmentation = ColorSegmentation()
                self.segmentation.add_to_model(crop)

    def on_key(self, key):
        if key == 32:  # Space bar to switch between modes
            self.normal = not self.normal
            print "Display Mode:", "Normal" if self.normal else "Segmented"

    def on_update(self):
        """ Callback for periodic update.
        """
        if self.normal:
            self.img.clear_layers()
            self.img.dl().rectangle_to_pts(self.point1, self.point2, color=Color.RED)
            self.show(self.img.apply_layers())
        else:
            self.segmentation.add_image(self.img)
            if self.segmentation.is_ready():
                img = self.segmentation.get_segmented_image()
                img = img.erode(iterations = 2).dilate().invert()
                self.show(img)
Пример #5
0
 def process_image(self):
     #Start SimpleCV Code
     img = Image('lenna').rotate90().edges(self.edge_threshold).to_rgb()
     #End SimpleCV Code
     return img
import time

from simplecv.api import Image
import ImageTk  # This has to be installed from the system repos
import Tkinter

Tkinter.Tk()

image = Image('http://i.imgur.com/FTKqh.jpg')  # load the simplecv logo from the web
photo = ImageTk.PhotoImage(image.get_pil())
label = Tkinter.Label(image=photo)
label.image = photo  # keep a reference!
label.pack()  # show the image
time.sleep(5)
Пример #7
0
    def __init__(self):
        super(EdgeSnapWindow, self).__init__('Color Segmentation Example')
        self.image = Image("shapes.png", sample=True).edges()
        self.points = []

        self.show(self.image)
Пример #8
0
 def process(self, filepath):
     img = Image(filepath)  # load the image into SimpleCV
     img = img.edges()  # Get the edges
     img.save(filepath)  # save the temporary image
This example rotates through a few of the image morphology examples

for more information see:
http://en.wikipedia.org/wiki/Mathematical_morphology
"""
print __doc__

from simplecv.api import Color, Image

max_threshold = 1  # this is used for the edge detection
threshold_step = 1  # this is the amount to adjust the threshold
threshold = max_threshold
example = 1

while True:
    image = Image('lenna')

    # This just automatically cycles through threshold levels
    if threshold >= 20:
        threshold = max_threshold
        if example >= 5:
            example = 1
        else:
            example += 1
    else:
        threshold += threshold_step

    if example == 1:
        image = image.erode(threshold)
        text = "Erode Morphology Example: img.erode(" + str(threshold) + ")"
This example shows how to perform various rotations and warps on images
and put back into a display.
"""
print __doc__

import time
from simplecv.api import Color, Image


sleep_for = 3  # seconds to sleep for
text_point = (20, 20)
font_size = 24
draw_color = Color.YELLOW

while True:
    image = Image("orson_welles.jpg", sample=True)
    image.dl().set_font_size(font_size)
    image.dl().text("Original Size", text_point, color=draw_color)
    image.show()
    time.sleep(sleep_for)

    rot = image.rotate(45)
    rot.dl().set_font_size(font_size)
    rot.dl().text("Rotated 45 degrees", text_point, color=draw_color)
    rot.show()
    time.sleep(sleep_for)

    rot = image.rotate(45, scale=0.5)
    rot.dl().set_font_size(font_size)
    rot.dl().text("Rotated 45 degreesand scaled", text_point, color=draw_color)
    rot.show()
"""
This example uses the built in template matching.  The easiest way
to think of this is if you played the card matching game, the cards would
pretty much have to be identical.  The template method doesn't allow much
for the scale to change, nor for rotation.  This is the most basic pattern
matching SimpleCV offers.  If you are looking for something more complex
you will probably want to look into img.find()
"""
print __doc__

import time

from simplecv.api import Image, Color, TemplateMatch

source = Image("templatetest.png", sample=True)  # the image to search
template = Image("template.png",
                 sample=True)  # the template to search the image for
t = 5

methods = [
    "SQR_DIFF", "SQR_DIFF_NORM", "CCOEFF", "CCOEFF_NORM", "CCORR", "CCORR_NORM"
]  # the various types of template matching available

for m in methods:
    img = Image("templatetest.png", sample=True)
    img.dl().text("current method: {}".format(m), (10, 20), color=Color.RED)
    fs = source.find(TemplateMatch, template, threshold=t, method=m)
    for match in fs:
        img.dl().rectangle((match.x, match.y), (match.width, match.height),
                           color=Color.RED)
    img.apply_layers().show()
#!/usr/bin/python
from simplecv.api import Color, Image
from simplecv.core.drawing.layer import DrawingLayer

img = Image("color.jpg", sample=True)
line_l = DrawingLayer()
a = (20, 20)
b = (20, 100)
c = (100, 100)
d = (100, 20)
line_l.line(a, b, alpha=128, width=5)
line_l.line(b, c, alpha=128)
line_l.line(c, d, antialias=True)
line_l.line(d, a, color=Color.PUCE)
line_l.line(b, d, width=5)
img.add_drawing_layer(line_l)
temp = img.apply_layers()
print "line: %s" % temp.save(temp=True)
img.clear_layers()

lines_l = DrawingLayer()
a = (20, 20)
b = (20, 100)
c = (100, 100)
d = (100, 20)
pts = (a, b, c, d, a)
lines_l.lines(pts, alpha=128)
# translate over and down 10
pts = map(lambda x: ((x[0] + 10), (x[1] + 10)), pts)
lines_l.lines(pts, color=Color.BEIGE, width=10)
#translate over and down 10
Пример #13
0
"""
This program super imposes the camera onto the television in the picture
"""
print __doc__

from simplecv.api import Camera, Image

tv_original = Image("family_watching_television_1958.jpg", sample=True)

tv_coordinates = [(353, 379), (433, 380), (432, 448), (354, 446)]
tv_mask = Image(tv_original.size_tuple).invert().warp(tv_coordinates)
tv = tv_original - tv_mask

c = Camera()

while True:
    bwimage = c.get_image().to_gray().resize(tv.width, tv.height).to_bgr()
    on_tv = tv + bwimage.warp(tv_coordinates)
    on_tv.show()
Пример #14
0
"""
This program basically functions like a greenscreen that typically
a weather or news reporter would use.  It allows you to super impose
anything standing in front of a "green screen" in front of another image
this should even work with a camera is the user is standing in front
of a green background
"""
print __doc__

import time
from simplecv.api import Image, Color


gs = Image("greenscreen.png", sample=True)
gs.show()
time.sleep(3)
background = Image("icecave.png", sample=True)
background.show()
time.sleep(3)
matte = gs.hue_distance(color=Color.GREEN, minvalue=100).binarize(inverted=True).to_bgr()
matte.show()
time.sleep(3)
result = (gs - matte) + (background - matte.invert())
result.show()
time.sleep(3)
quarter - 24.26 mm

"""
import time

from simplecv.api import Image, Color, Blob

print __doc__

# A quarter is 24.26mm or 0.955in
quarter_size = 24.26  # millimeters

# This will hold the ratio of the image size to a quarter's actual size
size_ratio = 0

img = Image('coins.jpg', sample=True)
coins = img.invert().find(Blob, minsize=200)

# Here we compute the scale factor
if coins:
    c = coins[-1]
    diameter = c.radius * 2
    size_ratio = quarter_size / diameter

# Now we print the measurements back on the picture
for coin in coins:
    # get the physical size of the coin
    size = (coin.radius * 2) * size_ratio
    # label the coin accordingly
    if 18 < size < 20:
        coin_type = "penny"
Пример #16
0
"""
This demo is used to find missing pills in a blister type of package
it would be used in quality control in manufacturing type of application
were you are verifying that the correct number of pills are present
"""

from simplecv.api import Image, Color, Blob

pillcolor = (
    153, 198, 252
)  # This is set manually, you could either open the image you want and pick the color,
# or use blob detection to find the blob and do .mean_color() to get the RGB value
i = Image("pills.png", sample=True)
expected_pillcount = 12
saturation_threshold = 40  # This is how much saturation to allow in the image
pill_size = 100  # The size of the expected pills in pixels
packblobs = i.find(
    Blob, minsize=10)  # find the bright silver on back background, easy

# run through the list of pills (blobs) found and check their color and markup the image when they are found
for idx in range(len(packblobs)):
    pack = packblobs[idx].crop()

    pills_img = pack.hue_distance(pillcolor,
                                  minsaturation=saturation_threshold)
    pills_img = pills_img.binarize(127, inverted=True)

    pills = pills_img.find(Blob, minsize=pill_size)
    if not pills:
        continue
Пример #17
0
"""
This examples demonstrates the motionBlur method.
Use Up/Down Arrow keys to change power
Use Left/Right Arrow keys to change angle
"""
print __doc__

import time
import cv2
from simplecv.api import Image, Color
from simplecv.core.drawing.layer import DrawingLayer


img = Image((500, 500))
layer = DrawingLayer()
layer.set_font_size(25)

layer.rectangle((0, 0), (500, 500), Color.WHITE, 1, True)

# write the text
layer.text("Just some innocent looking dots", (50, 25), Color.BLACK)
layer.text("Use w/s keys to change intensity", (50, 50), Color.BLACK)
layer.text("a/d keys to change angle", (50, 75), Color.BLACK)

#draw 6 innocent looking dots
layer.circle((125, 200), 25, Color.RED, 1, True)
layer.circle((250, 200), 25, Color.BLUE, 1, True)
layer.circle((375, 200), 25, Color.GREEN, 1, True)
layer.circle((125, 300), 25, Color.YELLOW, 1, True)
layer.circle((250, 300), 25, Color.ORANGE, 1, True)
layer.circle((375, 300), 25, Color.CYAN, 1, True)