Пример #1
0
 def __init__(self, track: 'Track', evaluate: bool = True):
     """
         This class creates a new racing simulation and implements the controller of a car.
         :param track: The racing track object to be used in the simulation
         :param evaluate: Sets if GUI is visible or not
     """
     simulator.evaluate = evaluate
     self.track = track
     self.sensors = []
     self.episode = 1
     self.track_name = track
     self.episode_length = track.episode_length
     self.game_state = simulator.Simulation(track)
     self.best_score = -float('inf')
     self.best_features = []
     pass
Пример #2
0
def comp(a_track: 'Cave', weights_1: numpy.ndarray, weights_2: numpy.ndarray,
         sub1_points: int, sub2_points: int) -> (int, int):
    """
    Run competition safely

    :param weights_1: weights from controller 1
    :param weights_2: weights from controller 2
    :param sub1_points: controller1's score
    :param sub2_points: controller2's score

    :return: None
    """
    ctrl1 = Controller(chosen_cave, evaluate=False)
    ctrl2 = Controller2(chosen_cave, evaluate=False)

    simulator.evaluate = True
    simulation = simulator.Simulation(a_cave, player2=True)
    simulation.frame_step(2)
    frame_current = 0
    episode_length = 1058

    while frame_current <= 1058 and simulation.sub1.ontrack == True and simulation.sub1.oxigenio > 0 and simulation.sub2.ontrack == True and simulation.sub2.oxigenio > 0:
        ctrl1.sensors = simulation.sub1.sensors
        ctrl2.sensors = simulation.sub2.sensors

        simulation.sub1.sub_step(ctrl1.take_action(weights_1))
        simulation.sub2.sub_step(ctrl2.take_action(weights_2))
        simulation.comp_frame_step()

        frame_current += 1

    if simulation.sub1.ontrack == False and simulation.sub2.ontrack == False:
        print("Empate. Player 1 e Player 2 -> Recebem 1 ponto")
        sub2_points += 1
        sub1_points += 1
    elif simulation.sub1.oxigenio <= 0 and simulation.sub2.oxigenio <= 0:
        print("Empate. Player 1 e Player 2 -> Recebem 1 ponto")
        sub2_points += 1
        sub1_points += 1
    elif simulation.sub1.ontrack == False or simulation.sub1.oxigenio <= 0:
        print("Ganhador: Player 2 -> Recebe 3 pontos")
        sub2_points += 3
    elif simulation.sub2.ontrack == False or simulation.sub2.oxigenio <= 0:
        print("Ganhador: Player 1 -> Recebe 3 Pontos")
        sub2_points += 3

    return sub1_points, sub2_points
Пример #3
0
def comp(a_track: 'Track', weights_1: numpy.ndarray, weights_2: numpy.ndarray,
         car1_points: int, car2_points: int) -> (int, int):
    """
    Run competition safely

    :param weights_1: weights from controller 1
    :param weights_2: weights from controller 2
    :param car1_points: controller1's score
    :param car2_points: controller2's score

    :return: None
    """
    ctrl1 = Controller1(chosen_track, evaluate=False)
    ctrl2 = Controller2(chosen_track, evaluate=False)

    simulator.evaluate = True
    simulation = simulator.Simulation(a_track, 'player2')
    simulation.frame_step(4)
    frame_current = 0
    episode_length = 500
    while frame_current <= episode_length:
        ctrl1.sensors = simulation.car1.sensors
        ctrl2.sensors = simulation.car_bot.sensors

        simulation.car1.car_step(ctrl1.take_action(weights_1))
        simulation.car_bot.car_step(ctrl2.take_action(weights_2))
        simulation.comp_frame_step()

        frame_current += 1

    print("Player 1: " + str(simulation.car1.score))
    print("Player 2: " + str(simulation.car_bot.score))

    if simulation.car1.score > simulation.car_bot.score:
        print("Winner Player 1 received 3pts")
        car1_points += 3
    elif simulation.car1.score == simulation.car_bot.score:
        print("Both Players received 1pt")
        car2_points += 1
        car1_points += 1
    else:
        print("Winner Player 2 received 3pts")
        car2_points += 3

    return car1_points, car2_points
Пример #4
0
def run_sim(grid, program, max_steps, max_program_size, use_compile=False):
    grid = grid.splitlines()
    s = odo.Simulation(odo.DEFAULT_GRID_SIDE, debug=False, max_steps=max_steps)
    odo.load_grid(grid, s.grid)
    try:
        s.load_program(program.splitlines())
    except odo.ParserException as e:
        return (False, "Could not parse source code:\n%s" % (e))
    s.execute_program(compilation=use_compile)

    if s.instruction_num > max_program_size:
        return (False, "Maximum program size exceeded")
    if s.killed:
        if s.step_num >= max_program_size:
            return (False, "Program killed")
        else:
            return (False, "Maximum execution length exceeded")
    return (True, s)
Пример #5
0
    exit(-1)

simscale = 2

simulation_config = simulator.Simulation.Configuration()
simulation_config.numClouds = 15 * simscale
simulation_config.numUsers = 20 * simscale
simulation_config.numServices = 20 * simscale  #25*simscale
simulation_config.numInternalNodes = 15 * simscale
simulation_config.numBaseStations = 10 * simscale
simulation_config.migration_algorithm = migration_algorithm
simulation_config.service_cost_function = basicCostFunctions.ComplexCostFunctionNoActivation(
)  #ComplexCostFunction()
simulation_config.movement_model = 'linear'

sim = simulator.Simulation(simulation_config, rng)

if algorithm_choice == 8:
    log_file_name = input("log(model) filename: ")
    with open(log_file_name) as log_file:
        data = json.load(log_file)
        migration_algorithm.shared_agent.deserialize_model(
            [np.asarray(mat) for mat in data['model_weights']])

#global migration baseline strategies might need the entire simulation
if hasattr(migration_algorithm, 'set_simulation'):
    migration_algorithm.set_simulation(sim)

enable_visualization = True
if enable_visualization:
    simPltPygame = SimPlotPygame(sim)
Пример #6
0
def run_experiment(id, numUsers, numEpochs, seed,
                   target_model_update_frequency, network_depth,
                   service_cost_function, migration_algorithm):
    rng = random.Random()
    rng.seed(seed)

    date_time = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
    filename = "simulation_output/sim_target_and_depth_test_" + date_time + "_" + str(
        id) + ".txt"
    hparam = Learning.DQNMigrationAlgorithm.Hyperparameters()
    hparam.batch_fraction_of_replay_memory = 1
    hparam.max_replay_memory_size = 1000
    hparam.episode_length = 1000
    hparam.num_epochs = 50
    hparam.network_depth = network_depth
    hparam.network_width = 20
    hparam.max_num_services = 3
    hparam.initial_exploration_boost = 0
    hparam.target_model_update_frequency = target_model_update_frequency

    #migration_algorithm = Learning.DQNMigrationAlgorithm(hparam, rng,True)
    #migration_algorithm = Learning.DQNMigrationAlgorithm(hparam, rng)

    simulation_config = simulator.Simulation.Configuration()
    simulation_config.numClouds = 15 * simscale
    simulation_config.numUsers = numUsers
    simulation_config.numServices = numUsers
    simulation_config.numInternalNodes = 15 * simscale
    simulation_config.numBaseStations = 10 * simscale
    simulation_config.migration_algorithm = migration_algorithm
    simulation_config.service_cost_function = service_cost_function  #basicCostFunctions.ComplexCostFunctionNoActivation()
    simulation_config.movement_model = 'linear'

    sim = simulator.Simulation(simulation_config, rng)
    progress(0, num_simulation_steps)

    #simulate
    for i in range(num_simulation_steps):
        sim.step()
        if i % 500 == 0:
            progress(i, num_simulation_steps)

            # converte data to JSON
            data = {}
            data['num_simulation_steps'] = i
            data['random_seed'] = seed
            data['statistics'] = sim.statistics.getSerializableDict()
            data['avgRewards'] = migration_algorithm.shared_agent.avgRewards
            data['configuration'] = simulation_config.get_serializable_dict()
            data['hyperparameters'] = hparam.get_serializable_dict()
            if hasattr(migration_algorithm, 'shared_agent'):
                if hasattr(migration_algorithm.shared_agent,
                           'serialize_model'):
                    data['model_weights'] = [
                        x.tolist() for x in
                        migration_algorithm.shared_agent.serialize_model()
                    ]
            json_str = json.dumps(data, indent=4)

            # create directory if not existent
            if not os.path.exists(os.path.dirname(filename)):
                try:
                    os.makedirs(os.path.dirname(filename))
                except OSError as exc:  # Guard against race condition
                    if exc.errno != errno.EEXIST:
                        raise

            # write json
            f = open(filename, "w+")
            f.write(json_str)
            f.close()
    progress(num_simulation_steps, num_simulation_steps)