Пример #1
0
def create_net(num_classes=1001,
               sample_shape=(3, 299, 299),
               is_training=True,
               dropout_keep_prob=0.8,
               final_endpoint='InceptionV4/Mixed_7d',
               aux_endpoint='InceptionV4/Mixed_6e'):
    """Creates the Inception V4 model.

    Args:
        num_classes: number of predicted classes.
        is_training: whether is training or not.
        dropout_keep_prob: float, the fraction to keep before final layer.
        final_endpoint, aux_endpoint: refer to inception_v4_base()

    Returns:
        logits: the logits outputs of the model.
        end_points: the set of end_points from the inception model.
    """
    end_points = {}
    name = 'InceptionV4'
    net, end_points = inception_v4_base(sample_shape,
                                        final_endpoint=final_endpoint,
                                        aux_endpoint=aux_endpoint)
    # Auxiliary Head logits
    if aux_endpoint is not None:
        # 17 x 17 x 1024
        aux_logits = end_points[aux_endpoint + '-aux']
        blk = name + '/AuxLogits'
        net.add(
            AvgPooling2D('%s/AvgPool_1a_5x5' % blk,
                         5,
                         stride=3,
                         border_mode='VALID'), aux_logits)
        t = conv2d(net, '%s/Conv2d_1b_1x1' % blk, 128, 1)
        conv2d(net,
               '%s/Conv2d_2a' % blk,
               768,
               t.get_output_sample_shape()[1:3],
               border_mode='VALID')
        net.add(Flatten('%s/flat' % blk))
        end_points[blk] = net.add(Dense('%s/Aux_logits' % blk, num_classes))

    # Final pooling and prediction
    # 8 x 8 x 1536
    blk = name + '/Logits'
    last_layer = end_points[final_endpoint]
    net.add(
        AvgPooling2D('%s/AvgPool_1a' % blk,
                     last_layer.get_output_sample_shape()[1:3],
                     border_mode='VALID'), last_layer)
    # 1 x 1 x 1536
    net.add(Dropout('%s/Dropout_1b' % blk, 1 - dropout_keep_prob))
    net.add(Flatten('%s/PreLogitsFlatten' % blk))
    # 1536
    end_points[blk] = net.add(Dense('%s/Logits' % blk, num_classes))
    return net, end_points
Пример #2
0
def create_net(num_classes=1001,
               sample_shape=(3, 299, 299),
               final_endpoint='InceptionV3/Mixed_7c',
               aux_endpoint='InceptionV3/Mixed_6e',
               dropout_keep_prob=0.8):
    """Creates the Inception V4 model.

    Args:
        num_classes: number of predicted classes.
        dropout_keep_prob: float, the fraction to keep before final layer.
        final_endpoint: 'InceptionV3/Mixed_7d',
        aux_endpoint:

    Returns:
        logits: the logits outputs of the model.
        end_points: the set of end_points from the inception model.
    """
    name = 'InceptionV3'
    net, end_points = inception_v3_base(name, sample_shape, final_endpoint,
                                        aux_endpoint)
    # Auxiliary Head logits
    if aux_endpoint is not None:
        # 8 x 8 x 1280
        aux_logits = end_points[aux_endpoint + '-aux']
        blk = name + '/AuxLogits'
        net.add(
            AvgPooling2D('%s/AvgPool_1a_5x5' % blk,
                         5,
                         stride=3,
                         border_mode='VALID'), aux_logits)
        t = conv2d(net, '%s/Conv2d_1b_1x1' % blk, 128, 1)
        s = t.get_output_sample_shape()[1:3]
        conv2d(net,
               '%s/Conv2d_2a_%dx%d' % (blk, s[0], s[1]),
               768,
               s,
               border_mode='VALID')
        net.add(Conv2D('%s/Conv2d_2b_1x1' % blk, num_classes, 1))
        net.add(Flatten('%s/flat' % blk))

    # Final pooling and prediction
    # 8 x 8 x 2048
    blk = name + '/Logits'
    last_layer = end_points[final_endpoint]
    net.add(
        AvgPooling2D('%s/AvgPool_1a' % blk,
                     last_layer.get_output_sample_shape()[1:3],
                     1,
                     border_mode='VALID'), last_layer)
    # 1 x 1 x 2048
    net.add(Dropout('%s/Dropout_1b' % blk, 1 - dropout_keep_prob))
    net.add(Conv2D('%s/Conv2d_1c_1x1' % blk, num_classes, 1))
    end_points[blk] = net.add(Flatten('%s/flat' % blk))
    # 2048
    return net, end_points
Пример #3
0
def create_preact_resnet(depth=200):
    '''Resnet with the batchnorm and relu moved to before the conv layer for each block'''
    net = ffnet.FeedForwardNet()
    net.add(
        Conv2D('input-conv',
               64,
               7,
               2,
               pad=3,
               use_bias=False,
               input_sample_shape=(3, 224, 224)))
    net.add(BatchNormalization('input-bn'))
    net.add(Activation('input_relu'))
    net.add(MaxPooling2D('input_pool', 3, 2, pad=1))
    conf = cfg[depth]
    if depth > 34:
        stage(0, net, conf[0], 64, 64, 256, 1, bottleneck, preact=True)
        stage(1, net, conf[1], 256, 128, 512, 2, bottleneck, preact=True)
        stage(2, net, conf[2], 512, 256, 1024, 2, bottleneck, preact=True)
        stage(3, net, conf[3], 1024, 512, 2048, 2, bottleneck, preact=True)
    else:
        stage(0, net, conf[0], 64, 64, 64, 1, basicblock, preact=True)
        stage(1, net, conf[1], 64, 128, 128, 2, basicblock, preact=True)
        stage(2, net, conf[2], 128, 256, 256, 2, basicblock, preact=True)
        stage(3, net, conf[3], 256, 512, 512, 2, basicblock, preact=True)
    net.add(BatchNormalization('final-bn'))
    net.add(Activation('final-relu'))
    net.add(AvgPooling2D('avg', 7, 1, pad=0))
    net.add(Flatten('flat'))
    net.add(Dense('dense', 1000))
    return net
Пример #4
0
def create_resnet(depth=18):
    '''Original resnet, where the there is a relue after the addition layer'''
    net = ffnet.FeedForwardNet()
    net.add(
        Conv2D('input-conv',
               64,
               7,
               2,
               pad=3,
               use_bias=False,
               input_sample_shape=(3, 224, 224)))
    net.add(BatchNormalization('input-bn'))
    net.add(Activation('input_relu'))
    net.add(MaxPooling2D('input_pool', 3, 2, pad=1))
    conf = cfg[depth]
    if depth > 34:
        stage(0, net, conf[0], 64, 64, 256, 1, bottleneck)
        stage(1, net, conf[1], 256, 128, 512, 2, bottleneck)
        stage(2, net, conf[2], 512, 256, 1024, 2, bottleneck)
        stage(3, net, conf[3], 1024, 512, 2048, 2, bottleneck)
    else:
        stage(0, net, conf[0], 64, 64, 64, 1, basicblock)
        stage(1, net, conf[1], 64, 128, 128, 2, basicblock)
        stage(2, net, conf[2], 128, 256, 256, 2, basicblock)
        stage(3, net, conf[3], 256, 512, 512, 2, basicblock)
    net.add(AvgPooling2D('avg', 7, 1, pad=0))
    net.add(Flatten('flat'))
    net.add(Dense('dense', 1000))
    return net
Пример #5
0
def add_transition(name, net, n_channels, last=False):
    net.add(BatchNormalization('%s/norm' % name))
    lyr = net.add(Activation('%s/relu' % name))
    if last:
        net.add(
            AvgPooling2D('%s/pool' % name,
                         lyr.get_output_sample_shape()[1:3],
                         pad=0))
        net.add(Flatten('flat'))
    else:
        net.add(
            Conv2D('%s/conv' % name,
                   n_channels,
                   1,
                   1,
                   pad=0,
                   use_bias=conv_bias))
        net.add(AvgPooling2D('%s/pool' % name, 2, 2, pad=0))
Пример #6
0
def block_inception_a(blk, net):
    """Builds Inception-A block for Inception v4 network."""
    # By default use stride=1 and SAME padding
    s = net.add(Split('%s/Split' % blk, 4))
    br0 = conv2d(net, '%s/Branch_0/Conv2d_0a_1x1' % blk, 96, 1, src=s)
    conv2d(net, '%s/Branch_1/Conv2d_0a_1x1' % blk, 64, 1, src=s)
    br1 = conv2d(net, '%s/Branch_1/Conv2d_0b_3x3' % blk, 96, 3)
    conv2d(net, '%s/Branch_2/Conv2d_0a_1x1' % blk, 64, 1, src=s)
    conv2d(net, '%s/Branch_2/Conv2d_0b_3x3' % blk, 96, 3)
    br2 = conv2d(net, '%s/Branch_2/Conv2d_0c_3x3' % blk, 96, 3)
    net.add(AvgPooling2D('%s/Branch_3/AvgPool_0a_3x3' % blk, 3, stride=1), s)
    br3 = conv2d(net, '%s/Branch_3/Conv2d_0b_1x1' % blk, 96, 1)
    return net.add(Concat('%s/Concat' % blk, 1), [br0, br1, br2, br3])
Пример #7
0
def block_inception_b(blk, net):
    """Builds Inception-B block for Inception v4 network."""
    # By default use stride=1 and SAME padding
    s = net.add(Split('%s/Split' % blk, 4))
    br0 = conv2d(net, '%s/Branch_0/Conv2d_0a_1x1' % blk, 384, 1, src=s)
    br1 = conv2d(net, '%s/Branch_1/Conv2d_0a_1x1' % blk, 192, 1, src=s)
    br1 = conv2d(net, '%s/Branch_1/Conv2d_0b_1x7' % blk, 224, (1, 7))
    br1 = conv2d(net, '%s/Branch_1/Conv2d_0c_7x1' % blk, 256, (7, 1))
    br2 = conv2d(net, '%s/Branch_2/Conv2d_0a_1x1' % blk, 192, 1, src=s)
    br2 = conv2d(net, '%s/Branch_2/Conv2d_0b_7x1' % blk, 192, (7, 1))
    br2 = conv2d(net, '%s/Branch_2/Conv2d_0c_1x7' % blk, 224, (1, 7))
    br2 = conv2d(net, '%s/Branch_2/Conv2d_0d_7x1' % blk, 224, (7, 1))
    br2 = conv2d(net, '%s/Branch_2/Conv2d_0e_1x7' % blk, 256, (1, 7))
    br3 = net.add(AvgPooling2D('%s/Branch_3/AvgPool_0a_3x3' % blk, 3, 1), s)
    br3 = conv2d(net, '%s/Branch_3/Conv2d_0b_1x1' % blk, 128, 1)
    return net.add(Concat('%s/Concat' % blk, 1), [br0, br1, br2, br3])
Пример #8
0
def create_net(shape, weight_path='bvlc_googlenet.pickle'):
    net = ffnet.FeedForwardNet()
    net.add(Conv2D('conv1/7x7_s2', 64, 7, 2, pad=3, input_sample_shape=shape))
    c1 = net.add(Activation('conv1/relu_7x7'))
    pool1 = pool(net, c1, 'pool1/3x3_s2', 3, 2)
    norm1 = net.add(LRN('pool1/norm1', 5, 0.0001, 0.75))
    c3x3r = conv(net, norm1, 'conv2', 64, 1, suffix='3x3_reduce')
    c3x3 = conv(net, c3x3r, 'conv2', 192, 3, pad=1, suffix='3x3')
    norm2 = net.add(LRN('conv2/norm2', 5, 0.0001, 0.75))
    pool2 = pool(net, norm2, 'pool2/3x3_s2', 3, 2)

    i3a = inception(net, pool2, 'inception_3a', 64, 96, 128, 16, 32, 32)
    i3b = inception(net, i3a, 'inception_3b', 128, 128, 192, 32, 96, 64)
    pool3 = pool(net, i3b, 'pool3/3x3_s2', 3, 2)
    i4a = inception(net, pool3, 'inception_4a', 192, 96, 208, 16, 48, 64)
    i4b = inception(net, i4a, 'inception_4b', 160, 112, 224, 24, 64, 64)
    i4c = inception(net, i4b, 'inception_4c', 128, 128, 256, 24, 64, 64)
    i4d = inception(net, i4c, 'inception_4d', 112, 144, 288, 32, 64, 64)
    i4e = inception(net, i4d, 'inception_4e', 256, 160, 320, 32, 128, 128)
    pool4 = pool(net, i4e, 'pool4/3x3_s2', 3, 2)
    i5a = inception(net, pool4, 'inception_5a', 256, 160, 320, 32, 128, 128)
    i5b = inception(net, i5a, 'inception_5b', 384, 192, 384, 48, 128, 128)
    pool5 = net.add(AvgPooling2D('pool5/7x7_s1', 7, 1, pad=0))
    drop5 = net.add(Dropout('drop', 0.4))
    flat = net.add(Flatten('flat'))
    dense = net.add(Dense('loss3/classifier', 1000))
    # prob=net.add(Softmax('softmax'))

    net.load(weight_path, use_pickle=True)
    print('total num of params %d' % (len(net.param_names())))
    # SINGA and Caffe have different layout for the weight matrix of the dense
    # layer
    for key, val in zip(net.param_names(), net.param_values()):
        # print key
        if key == 'loss3/classifier_weight' or key == 'loss3/classifier/weight':
            tmp = tensor.to_numpy(val)
            tmp = tmp.reshape(tmp.shape[::-1])
            val.copy_from_numpy(np.transpose(tmp))
    return net
Пример #9
0
def block_inception_c(blk, net):
    """Builds Inception-C block for Inception v4 network."""
    # By default use stride=1 and SAME padding
    s = net.add(Split('%s/Split' % blk, 4))
    br0 = conv2d(net, '%s/Branch_0/Conv2d_0a_1x1' % blk, 256, 1, src=s)

    br1 = conv2d(net, '%s/Branch_1/Conv2d_0a_1x1' % blk, 384, 1, src=s)
    br1 = net.add(Split('%s/Branch_1/Split' % blk, 2))
    br10 = conv2d(net, '%s/Branch_1/Conv2d_0b_1x3' % blk, 256, (1, 3), src=br1)
    br11 = conv2d(net, '%s/Branch_1/Conv2d_0c_3x1' % blk, 256, (3, 1), src=br1)
    br1 = net.add(Concat('%s/Branch_1/Concat' % blk, 1), [br10, br11])

    br2 = conv2d(net, '%s/Branch_2/Conv2d_0a_1x1' % blk, 384, 1, src=s)
    br2 = conv2d(net, '%s/Branch_2/Conv2d_0b_3x1' % blk, 448, (3, 1))
    br2 = conv2d(net, '%s/Branch_2/Conv2d_0c_1x3' % blk, 512, (1, 3))
    br2 = net.add(Split('%s/Branch_2/Split' % blk, 2))
    br20 = conv2d(net, '%s/Branch_2/Conv2d_0d_1x3' % blk, 256, (1, 3), src=br2)
    br21 = conv2d(net, '%s/Branch_2/Conv2d_0e_3x1' % blk, 256, (3, 1), src=br2)
    br2 = net.add(Concat('%s/Branch_2/Concat' % blk, 1), [br20, br21])

    br3 = net.add(AvgPooling2D('%s/Branch_3/AvgPool_0a_3x3' % blk, 3, 1), s)
    br3 = conv2d(net, '%s/Branch_3/Conv2d_0b_1x1' % blk, 256, 1)
    return net.add(Concat('%s/Concat' % blk, 1), [br0, br1, br2, br3])
Пример #10
0
def create_wide_resnet(depth=50):
    '''Similar original resnet except that a<=b<=c for the bottleneck block'''
    net = ffnet.FeedForwardNet()
    net.add(
        Conv2D('input-conv',
               64,
               7,
               2,
               pad=3,
               use_bias=False,
               input_sample_shape=(3, 224, 224)))
    net.add(BatchNormalization('input-bn'))
    net.add(Activation('input_relu'))
    net.add(MaxPooling2D('input_pool', 3, 2, pad=1))

    stage(0, net, 3, 64, 128, 256, 1, bottleneck)
    stage(1, net, 4, 256, 256, 512, 2, bottleneck)
    stage(2, net, 6, 512, 512, 1024, 2, bottleneck)
    stage(3, net, 3, 1024, 1024, 2048, 2, bottleneck)

    net.add(AvgPooling2D('avg_pool', 7, 1, pad=0))
    net.add(Flatten('flag'))
    net.add(Dense('dense', 1000))
    return net
Пример #11
0
def inception_v3_base(name,
                      sample_shape,
                      final_endpoint,
                      aux_endpoint,
                      depth_multiplier=1,
                      min_depth=16):
    """Creates the Inception V3 network up to the given final endpoint.

    Args:
        sample_shape: input image sample shape, 3d tuple
        final_endpoint: specifies the endpoint to construct the network up to.
        aux_endpoint: for aux loss.

    Returns:
        logits: the logits outputs of the model.
        end_points: the set of end_points from the inception model.

    Raises:
        ValueError: if final_endpoint is not set to one of the predefined values
    """
    V3 = 'InceptionV3'
    end_points = {}
    net = ffnet.FeedForwardNet()

    def final_aux_check(block_name):
        if block_name == final_endpoint:
            return True
        if block_name == aux_endpoint:
            aux = aux_endpoint + '-aux'
            end_points[aux] = net.add(Split(aux, 2))
        return False

    def depth(d):
        return max(int(d * depth_multiplier), min_depth)

    blk = V3 + '/Conv2d_1a_3x3'
    # 299 x 299 x 3
    net.add(
        Conv2D(blk,
               depth(32),
               3,
               2,
               border_mode='VALID',
               use_bias=False,
               input_sample_shape=sample_shape))
    net.add(BatchNormalization(blk + '/BatchNorm'))
    end_points[blk] = net.add(Activation(blk + '/relu'))
    if final_aux_check(blk):
        return net, end_points

    # 149 x 149 x 32
    conv2d(net, '%s/Conv2d_2a_3x3' % V3, depth(32), 3, border_mode='VALID')
    # 147 x 147 x 32
    conv2d(net, '%s/Conv2d_2b_3x3' % V3, depth(64), 3)
    # 147 x 147 x 64
    net.add(MaxPooling2D('%s/MaxPool_3a_3x3' % V3, 3, 2, border_mode='VALID'))
    # 73 x 73 x 64
    conv2d(net, '%s/Conv2d_3b_1x1' % V3, depth(80), 1, border_mode='VALID')
    # 73 x 73 x 80.
    conv2d(net, '%s/Conv2d_4a_3x3' % V3, depth(192), 3, border_mode='VALID')
    # 71 x 71 x 192.
    net.add(MaxPooling2D('%s/MaxPool_5a_3x3' % V3, 3, 2, border_mode='VALID'))

    # 35 x 35 x 192.
    blk = V3 + '/Mixed_5b'
    s = net.add(Split('%s/Split' % blk, 4))
    br0 = conv2d(net, '%s/Branch_0/Conv2d_0a_1x1' % blk, depth(64), 1, src=s)
    br1 = conv2d(net, '%s/Branch_1/Conv2d_0a_1x1' % blk, depth(48), 1, src=s)
    br1 = conv2d(net, '%s/Branch_1/Conv2d_0b_5x5' % blk, depth(64), 5)
    br2 = conv2d(net, '%s/Branch_2/Conv2d_0a_1x1' % blk, depth(64), 1, src=s)
    br2 = conv2d(net, '%s/Branch_2/Conv2d_0b_3x3' % blk, depth(96), 3)
    br2 = conv2d(net, '%s/Branch_2/Conv2d_0c_3x3' % blk, depth(96), 3)
    net.add(AvgPooling2D('%s/Branch_3/AvgPool_0a_3x3' % blk, 3, 1), s)
    br3 = conv2d(net, '%s/Branch_3/Conv2d_0b_1x1' % blk, depth(32), 1)
    end_points[blk] = net.add(Concat('%s/Concat' % blk, 1),
                              [br0, br1, br2, br3])
    if final_aux_check(blk):
        return net, end_points

    # mixed_1: 35 x 35 x 288.
    blk = V3 + '/Mixed_5c'
    s = net.add(Split('%s/Split' % blk, 4))
    br0 = conv2d(net, '%s/Branch_0/Conv2d_0a_1x1' % blk, depth(64), 1, src=s)
    br1 = conv2d(net, '%s/Branch_1/Conv2d_0b_1x1' % blk, depth(48), 1, src=s)
    br1 = conv2d(net, '%s/Branch_1/Conv_1_0c_5x5' % blk, depth(64), 5)
    br2 = conv2d(net, '%s/Branch_2/Conv2d_0a_1x1' % blk, depth(64), 1, src=s)
    br2 = conv2d(net, '%s/Branch_2/Conv2d_0b_3x3' % blk, depth(96), 3)
    br2 = conv2d(net, '%s/Branch_2/Conv2d_0c_3x3' % blk, depth(96), 3)
    br3 = net.add(AvgPooling2D('%s/Branch_3/AvgPool_0a_3x3' % blk, 3, 1),
                  src=s)
    br3 = conv2d(net, '%s/Branch_3/Conv2d_0b_1x1' % blk, depth(64), 1)
    end_points[blk] = net.add(Concat('%s/Concat' % blk, 1),
                              [br0, br1, br2, br3])
    if final_aux_check(blk):
        return net, end_points

    # mixed_2: 35 x 35 x 288.
    blk = V3 + '/Mixed_5d'
    s = net.add(Split('%s/Split' % blk, 4))
    br0 = conv2d(net, '%s/Branch_0/Conv2d_0a_1x1' % blk, depth(64), 1, src=s)
    br1 = conv2d(net, '%s/Branch_1/Conv2d_0a_1x1' % blk, depth(48), 1, src=s)
    br1 = conv2d(net, '%s/Branch_1/Conv2d_0b_5x5' % blk, depth(64), 5)
    br2 = conv2d(net, '%s/Branch_2/Conv2d_0a_1x1' % blk, depth(64), 1, src=s)
    br2 = conv2d(net, '%s/Branch_2/Conv2d_0b_3x3' % blk, depth(96), 3)
    br2 = conv2d(net, '%s/Branch_2/Conv2d_0c_3x3' % blk, depth(96), 3)
    br3 = net.add(AvgPooling2D('%s/Branch_3/AvgPool_0a_3x3' % blk, 3, 1), s)
    br3 = conv2d(net, '%s/Branch_3/Conv2d_0b_1x1' % blk, depth(64), 1)
    end_points[blk] = net.add(Concat('%s/Concat' % blk, 1),
                              [br0, br1, br2, br3])
    if final_aux_check(blk):
        return net, end_points

    # mixed_3: 17 x 17 x 768.
    blk = V3 + '/Mixed_6a'
    s = net.add(Split('%s/Split' % blk, 3))
    br0 = conv2d(net,
                 '%s/Branch_0/Conv2d_1a_1x1' % blk,
                 depth(384),
                 3,
                 2,
                 border_mode='VALID',
                 src=s)
    br1 = conv2d(net, '%s/Branch_1/Conv2d_0a_1x1' % blk, depth(64), 1, src=s)
    br1 = conv2d(net, '%s/Branch_1/Conv2d_0b_3x3' % blk, depth(96), 3)
    br1 = conv2d(net,
                 '%s/Branch_1/Conv2d_1a_1x1' % blk,
                 depth(96),
                 3,
                 2,
                 border_mode='VALID')
    br2 = net.add(
        MaxPooling2D('%s/Branch_2/MaxPool_1a_3x3' % blk,
                     3,
                     2,
                     border_mode='VALID'), s)
    end_points[blk] = net.add(Concat('%s/Concat' % blk, 1), [br0, br1, br2])
    if final_aux_check(blk):
        return net, end_points

    # mixed4: 17 x 17 x 768.
    blk = V3 + '/Mixed_6b'
    s = net.add(Split('%s/Split' % blk, 4))
    br0 = conv2d(net, '%s/Branch_0/Conv2d_0a_1x1' % blk, depth(192), 1, src=s)
    br1 = conv2d(net, '%s/Branch_1/Conv2d_0a_1x1' % blk, depth(128), 1, src=s)
    br1 = conv2d(net, '%s/Branch_1/Conv2d_0b_1x7' % blk, depth(128), [1, 7])
    br1 = conv2d(net, '%s/Branch_1/Conv2d_0c_7x1' % blk, depth(192), [7, 1])
    br2 = conv2d(net,
                 '%s/Branch_2/Conv2d_0a_1x1' % blk,
                 depth(128), [1, 1],
                 src=s)
    br2 = conv2d(net, '%s/Branch_2/Conv2d_0b_7x1' % blk, depth(128), [7, 1])
    br2 = conv2d(net, '%s/Branch_2/Conv2d_0c_1x7' % blk, depth(128), [1, 7])
    br2 = conv2d(net, '%s/Branch_2/Conv2d_0d_7x1' % blk, depth(128), [7, 1])
    br2 = conv2d(net, '%s/Branch_2/Conv2d_0e_1x7' % blk, depth(192), [1, 7])
    br3 = net.add(AvgPooling2D('%s/Branch_3/AvgPool_0a_3x3' % blk, 3, 1), s)
    br3 = conv2d(net, '%s/Branch_3/Conv2d_0b_1x1' % blk, depth(192), [1, 1])
    end_points[blk] = net.add(Concat('%s/Concat' % blk, 1),
                              [br0, br1, br2, br3])
    if final_aux_check(blk):
        return net, end_points

    # mixed_5: 17 x 17 x 768.
    blk = V3 + '/Mixed_6c'
    s = net.add(Split('%s/Split' % blk, 4))
    br0 = conv2d(net,
                 '%s/Branch_0/Conv2d_0a_1x1' % blk,
                 depth(192), [1, 1],
                 src=s)
    br1 = conv2d(net,
                 '%s/Branch_1/Conv2d_0a_1x1' % blk,
                 depth(160), [1, 1],
                 src=s)
    br1 = conv2d(net, '%s/Branch_1/Conv2d_0b_1x7' % blk, depth(160), [1, 7])
    br1 = conv2d(net, '%s/Branch_1/Conv2d_0c_7x1' % blk, depth(192), [7, 1])
    br2 = conv2d(net,
                 '%s/Branch_2/Conv2d_0a_1x1' % blk,
                 depth(160), [1, 1],
                 src=s)
    br2 = conv2d(net, '%s/Branch_2/Conv2d_0b_7x1' % blk, depth(160), [7, 1])
    br2 = conv2d(net, '%s/Branch_2/Conv2d_0c_1x7' % blk, depth(160), [1, 7])
    br2 = conv2d(net, '%s/Branch_2/Conv2d_0d_7x1' % blk, depth(160), [7, 1])
    br2 = conv2d(net, '%s/Branch_2/Conv2d_0e_1x7' % blk, depth(192), [1, 7])
    br3 = net.add(AvgPooling2D('%s/Branch_3/AvgPool_0a_3x3' % blk, 3, 1), s)
    br3 = conv2d(net, '%s/Branch_3/Conv2d_0b_1x1' % blk, depth(192), [1, 1])
    end_points[blk] = net.add(Concat('%s/Concat' % blk, 1),
                              [br0, br1, br2, br3])
    if final_aux_check(blk):
        return net, end_points

    # mixed_6: 17 x 17 x 768.
    blk = V3 + '/Mixed_6d'
    s = net.add(Split('%s/Split' % blk, 4))
    br0 = conv2d(net,
                 '%s/Branch_0/Conv2d_0a_1x1' % blk,
                 depth(192), [1, 1],
                 src=s)
    br1 = conv2d(net,
                 '%s/Branch_1/Conv2d_0a_1x1' % blk,
                 depth(160), [1, 1],
                 src=s)
    br1 = conv2d(net, '%s/Branch_1/Conv2d_0b_1x7' % blk, depth(160), [1, 7])
    br1 = conv2d(net, '%s/Branch_1/Conv2d_0c_7x1' % blk, depth(192), [7, 1])
    br2 = conv2d(net,
                 '%s/Branch_2/Conv2d_0a_1x1' % blk,
                 depth(160), [1, 1],
                 src=s)
    br2 = conv2d(net, '%s/Branch_2/Conv2d_0b_7x1' % blk, depth(160), [7, 1])
    br2 = conv2d(net, '%s/Branch_2/Conv2d_0c_1x7' % blk, depth(160), [1, 7])
    br2 = conv2d(net, '%s/Branch_2/Conv2d_0d_7x1' % blk, depth(160), [7, 1])
    br2 = conv2d(net, '%s/Branch_2/Conv2d_0e_1x7' % blk, depth(192), [1, 7])
    br3 = net.add(AvgPooling2D('%s/Branch_3/AvgPool_0a_3x3' % blk, 3, 1), s)
    br3 = conv2d(net, '%s/Branch_3/Conv2d_0b_1x1' % blk, depth(192), [1, 1])
    end_points[blk] = net.add(Concat('%s/Concat' % blk, 1),
                              [br0, br1, br2, br3])
    if final_aux_check(blk):
        return net, end_points

    blk = V3 + '/Mixed_6e'
    s = net.add(Split('%s/Split' % blk, 4))
    br0 = conv2d(net,
                 '%s/Branch_0/Conv2d_0a_1x1' % blk,
                 depth(192), [1, 1],
                 src=s)
    br1 = conv2d(net,
                 '%s/Branch_1/Conv2d_0a_1x1' % blk,
                 depth(192), [1, 1],
                 src=s)
    br1 = conv2d(net, '%s/Branch_1/Conv2d_0b_1x7' % blk, depth(192), [1, 7])
    br1 = conv2d(net, '%s/Branch_1/Conv2d_0c_7x1' % blk, depth(192), [7, 1])
    br2 = conv2d(net,
                 '%s/Branch_2/Conv2d_0a_1x1' % blk,
                 depth(192), [1, 1],
                 src=s)
    br2 = conv2d(net, '%s/Branch_2/Conv2d_0b_7x1' % blk, depth(192), [7, 1])
    br2 = conv2d(net, '%s/Branch_2/Conv2d_0c_1x7' % blk, depth(192), [1, 7])
    br2 = conv2d(net, '%s/Branch_2/Conv2d_0d_7x1' % blk, depth(192), [7, 1])
    br2 = conv2d(net, '%s/Branch_2/Conv2d_0e_1x7' % blk, depth(192), [1, 7])
    br3 = net.add(AvgPooling2D('%s/Branch_3/AvgPool_0a_3x3' % blk, 3, 1), s)
    br3 = conv2d(net, '%s/Branch_3/Conv2d_0b_1x1' % blk, depth(192), [1, 1])
    end_points[blk] = net.add(Concat('%s/Concat' % blk, 1),
                              [br0, br1, br2, br3])
    if final_aux_check(blk):
        return net, end_points

    # mixed_8: 8 x 8 x 1280.
    blk = V3 + '/Mixed_7a'
    s = net.add(Split('%s/Split' % blk, 3))
    br0 = conv2d(net,
                 '%s/Branch_0/Conv2d_0a_1x1' % blk,
                 depth(192), [1, 1],
                 src=s)
    br0 = conv2d(net,
                 '%s/Branch_0/Conv2d_1a_3x3' % blk,
                 depth(320), [3, 3],
                 2,
                 border_mode='VALID')
    br1 = conv2d(net,
                 '%s/Branch_1/Conv2d_0a_1x1' % blk,
                 depth(192), [1, 1],
                 src=s)
    br1 = conv2d(net, '%s/Branch_1/Conv2d_0b_1x7' % blk, depth(192), [1, 7])
    br1 = conv2d(net, '%s/Branch_1/Conv2d_0c_7x1' % blk, depth(192), [7, 1])
    br1 = conv2d(net,
                 '%s/Branch_1/Conv2d_1a_3x3' % blk,
                 depth(192), [3, 3],
                 2,
                 border_mode='VALID')
    br2 = net.add(
        MaxPooling2D('%s/Branch_2/MaxPool_1a_3x3' % blk,
                     3,
                     2,
                     border_mode='VALID'), s)
    end_points[blk] = net.add(Concat('%s/Concat' % blk, 1), [br0, br1, br2])
    if final_aux_check(blk):
        return net, end_points

    # mixed_9: 8 x 8 x 2048.
    blk = V3 + '/Mixed_7b'
    s = net.add(Split('%s/Split' % blk, 4))
    br0 = conv2d(net, '%s/Branch_0/Conv2d_0a_1x1' % blk, depth(320), 1, src=s)
    br1 = conv2d(net, '%s/Branch_1/Conv2d_0a_1x1' % blk, depth(384), 1, src=s)
    s1 = net.add(Split('%s/Branch_1/Split1' % blk, 2))
    br11 = conv2d(net,
                  '%s/Branch_1/Conv2d_0b_1x3' % blk,
                  depth(384), [1, 3],
                  src=s1)
    br12 = conv2d(net,
                  '%s/Branch_1/Conv2d_0b_3x1' % blk,
                  depth(384), [3, 1],
                  src=s1)
    br1 = net.add(Concat('%s/Branch_1/Concat1' % blk, 1), [br11, br12])
    br2 = conv2d(net, '%s/Branch_2/Conv2d_0a_1x1' % blk, depth(448), 1, src=s)
    br2 = conv2d(net, '%s/Branch_2/Conv2d_0b_3x3' % blk, depth(384), 3)
    s2 = net.add(Split('%s/Branch_2/Split2' % blk, 2))
    br21 = conv2d(net,
                  '%s/Branch_2/Conv2d_0c_1x3' % blk,
                  depth(384), [1, 3],
                  src=s2)
    br22 = conv2d(net,
                  '%s/Branch_2/Conv2d_0d_3x1' % blk,
                  depth(384), [3, 1],
                  src=s2)
    br2 = net.add(Concat('%s/Branch_2/Concat2' % blk, 1), [br21, br22])
    br3 = net.add(AvgPooling2D('%s/Branch_3/AvgPool_0a_3x3' % blk, 3, 1),
                  src=s)
    br3 = conv2d(net, '%s/Branch_3/Conv2d_0b_1x1' % blk, depth(192), [1, 1])
    end_points[blk] = net.add(Concat('%s/Concat' % blk, 1),
                              [br0, br1, br2, br3])
    if final_aux_check(blk):
        return net, end_points

    # mixed_10: 8 x 8 x 2048.
    blk = V3 + '/Mixed_7c'
    s = net.add(Split('%s/Split' % blk, 4))
    br0 = conv2d(net, '%s/Branch_0/Conv2d_0a_1x1' % blk, depth(320), 1, src=s)
    br1 = conv2d(net, '%s/Branch_1/Conv2d_0a_1x1' % blk, depth(384), 1, src=s)
    s1 = net.add(Split('%s/Branch_1/Split1' % blk, 2))
    br11 = conv2d(net,
                  '%s/Branch_1/Conv2d_0b_1x3' % blk,
                  depth(384), [1, 3],
                  src=s1)
    br12 = conv2d(net,
                  '%s/Branch_1/Conv2d_0c_3x1' % blk,
                  depth(384), [3, 1],
                  src=s1)
    br1 = net.add(Concat('%s/Branch_1/Concat1' % blk, 1), [br11, br12])
    br2 = conv2d(net,
                 '%s/Branch_2/Conv2d_0a_1x1' % blk,
                 depth(448), [1, 1],
                 src=s)
    br2 = conv2d(net, '%s/Branch_2/Conv2d_0b_3x3' % blk, depth(384), [3, 3])
    s2 = net.add(Split('%s/Branch_2/Split2' % blk, 2))
    br21 = conv2d(net,
                  '%s/Branch_2/Conv2d_0c_1x3' % blk,
                  depth(384), [1, 3],
                  src=s2)
    br22 = conv2d(net,
                  '%s/Branch_2/Conv2d_0d_3x1' % blk,
                  depth(384), [3, 1],
                  src=s2)
    br2 = net.add(Concat('%s/Branch_2/Concat2' % blk, 1), [br21, br22])
    br3 = net.add(AvgPooling2D('%s/Branch_3/AvgPool_0a_3x3' % blk, 3, 1),
                  src=s)
    br3 = conv2d(net, '%s/Branch_3/Conv2d_0b_1x1' % blk, depth(192), [1, 1])
    end_points[blk] = net.add(Concat('%s/Concat' % blk, 1),
                              [br0, br1, br2, br3])
    assert final_endpoint == blk, \
        'final_enpoint = %s is not in the net' % final_endpoint
    return net, end_points