from single_evaluation import single_eval import numpy as np import csv x1 = -5 x2 = 5 v, a, t = single_eval('Robin_Pre2', 'pre', 0) x1_marker = np.where(t >= x1) x1_marker = x1_marker[0][0] x2_marker = np.where(t >= x2) x2_marker = x2_marker[0][0] iteration = 'optim_in_progress' data_choice = 'pre' change_index = 0 h = 0.1 X = np.zeros([len(t[x1_marker:x2_marker]), 234]) for i in range(234): V_cPlus = np.ones(234) V_cMinus = np.ones(234) V_cPlus[i] = V_cPlus[i] + h V_cMinus[i] = V_cMinus[i] - h with open('./Samples/Temp_optim.csv', 'w') as csv_file: csv_writer = csv.writer(csv_file, delimiter=',')
#list_of_low_reactions=[4,10,11,12,13,15,17,18,19,22,52,54] # Cube 1 #list_of_low_reactions=[59,58,48,42,4,11] list_of_low_reactions = [5, 8, 10] n = len(list_of_low_reactions) for i in range(2**n): b = bin(i)[2:] l = len(b) b = str(0) * (n - l) + b combos.append(b) numpairs = len(combos) combos_for_ST = combos.copy() v_nominal, a_nominal, time = single_eval(values, model, []) if model == 'pre': dataset = 'tots_LNAME_pre' Data = im.import_Berwick_HET_LNAME_Data(dataset, area='Whisker') results_v = np.zeros([numpairs, 51]) QoIs = np.zeros([numpairs, 3]) sobolev_norm_R = np.zeros([numpairs, 1]) sobolev_norm_HBR = np.zeros([numpairs, 1]) sobolev_norm_Ca_i = np.zeros([numpairs, 1]) list_removed = list() for i in range(numpairs): print('starting ', i + 1, 'of ', numpairs) current_removed_index = list(combos[i])
from numpy.linalg import norm ## Tim these three lines are the ones to edit reactions_to_remove = [4, 11, 8, 52, 49, 50] # reactions to be removed as a list xlim1 = -1 #limits /for x values in graph xlim2 = 20 values = 'Robin_Pre2' model = 'pre' norm_flag = 2 v_a_flag = 'v' v_nominal, a_nominal, t = single_eval(values, model, []) v = [] a = [] v_temp, a_temp, t = single_eval(values, model, reactions_to_remove) if model == 'pre': dataset = 'tots_LNAME_pre' Data = im.import_Berwick_HET_LNAME_Data(dataset, area='Whisker') interpolator = interp1d(t, a_temp.HBO_N) HBO_interp = interpolator(Data.time) Error_HBO = HBO_interp - Data.HbOwhisk_mean Error_HBO = sum(map(lambda x: x * x, Error_HBO)) interpolator = interp1d(t, a_temp.HBR_N)
from test_switch_functions import compare_results_v from test_switch_functions import compare_results_a from test_switch_functions import compare_results_sobolev import math import numpy as np from numpy.linalg import norm values = 'Robin_Pre2' model = 'pre' norm_flag = 2 v_a_flag = 'sobolev' v_nominal, a_nominal, time = single_eval(values, model, []) v = [] a = [] if v_a_flag == 'v': for i in range(59 + 1): v_temp, a_temp, time = single_eval(values, model, i) v.append(v_temp) difference = np.zeros([59 + 1, 51]) for i in range(59 + 1): print('%i done' % i) difference[i, :] = compare_results_v(v_nominal, v[i], norm_flag) if v_a_flag == 'a_diff': for i in range(59 + 1):